买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】一种基于GNPs-L-Cys-Rh6G2荧光探针及其制备方法和应用_云南民族大学_201910094118.8 

申请/专利权人:云南民族大学

申请日:2019-01-30

公开(公告)日:2020-03-20

公开(公告)号:CN109825283B

主分类号:C09K11/06(20060101)

分类号:C09K11/06(20060101);C07D491/107(20060101);G01N21/64(20060101)

优先权:

专利状态码:有效-授权

法律状态:2020.03.20#授权;2019.06.25#实质审查的生效;2019.05.31#公开

摘要:本发明公开了一种基于GNPs‑L‑Cys‑Rh6G2荧光探针及其制备方法和应用。通过纳米金和含巯基的L‑半胱氨酸L‑Cys自组装后,再与含醛基的化合物Rh6G2合成一种所述的基于GNPs‑L‑Cys‑Rh6G2荧光探针具有结构式如式I所示:本发明是基于纳米金颗粒、L‑半胱氨酸和罗丹明6G的荧光探针具备对Cu2+的灵敏检测,为环境中的Cu2+的高灵敏检测技术手段的发展做出贡献。

主权项:1.一种基于GNPs-L-Cys-Rh6G2荧光探针,其特征在于:所述的基于GNPs-L-Cys-Rh6G2荧光探针具有结构式如式I所示: GNPs为纳米金颗粒。

全文数据:一种基于GNPs-L-Cys-Rh6G2荧光探针及其制备方法和应用技术领域本发明涉及检测技术领域,具体涉及一种基于GNPs-L-Cys-Rh6G2荧光探针及其制备方法和应用。背景技术水环境中重金属污染对生态环境和身体健康都有一定的危害,目前检测重金属的常用方法主要有原子荧光和原子吸收光谱法、原子发射光谱法等仪器分析方法,以上方法虽然有高灵敏度的优点但也存在缺点,如保存样品时间短、成本高、耗时。因此,开发水环境中重金属的高效、灵敏、便携、快捷的检测方法是研究的热点。近年来纳米金由于其等离子共振和良好的生物相容性等独特的理化性质而受到了广泛的关注,在分析化学领域也得到了广泛的应用,功能化的纳米金作为探针已广泛应用于药物分析、食品安全、环境分析、生物分析、生物标记等领域。荧光分子探针检测技术可实现高灵敏度单分子检测和实时检测,能够克服传统检测预处理过程的繁琐、成本较高等缺点。但纳米金颗粒本身不具体荧光特性,只能将纳米金颗粒功能化改性得到高灵敏的荧光分子探针。研制具有专一性、灵敏度高、抗干扰能力强的荧光分子探针受到广泛关注。发明内容本发明的目的在于提供一种对重金属具有灵敏响应的纳米荧光探针的基于GNPs-L-Cys-Rh6G2荧光探针及其制备方法和应用。为实现上述技术目的,本发明采用如下技术方案:本发明的一种基于GNPs-L-Cys-Rh6G2荧光探针,具有如下如式I所示:本发明的一种基于GNPs-L-Cys-Rh6G2荧光探针的制备方法,包括如下步骤:1纳米金颗粒GNPs的制备:将质量百分比为0.01%氯金酸溶液500mL在600rmin的转速下搅拌并加热至沸腾,迅速加入17.5mL1%的柠檬酸钠溶液,搅拌加热至溶液颜色变为橙红色,自然搅拌冷却,4℃以下棕色瓶保存;2罗丹明6G2Rh6G2的制备:合成Rh6G,Rh6G与水合肼反应生成内酰胺螺环分子R1,R1与乙二醛反应得到Rh6G2;3GNPs-L-Cys-Rh6G2荧光探针分子的制备:取纳米金溶液、L-Cys溶液各1mL混匀,常温下自组装反应1小时后,加入1mLRh6G20.1mM的甲醇溶液和1mL甲醇,常温下自组装反应1小时,制得基于GNPs-L-Cys-Rh6G2荧光探针。进一步地,在步骤1中,制备纳米金颗粒的粒径为11nm-15nm。进一步地,在步骤2中,制备的Rh6G2是Rh6G经过醛基化处理得到,所述的醛基化试剂为乙二醛。更进一步地,在步骤2中,所述的纳米金颗粒与Rh6G2的桥接分子为L-Cys,所述的L-Cys的浓度为1.0mM。进一步地,在步骤3中,所述的纳米金颗粒、L-Cys0.1mM、Rh6G20.1mM的体积比为1:1:1。本发明所述的基于GNPs-L-Cys-Rh6G2荧光探针在检测重金属Cu2+的应用。本发明所述的基于GNPs-L-Cys-Rh6G2荧光探针在检测重金属Cu2+的应用,检测溶液为CH3OHH2O,检测溶液pH为7,所述的缓冲溶液为Tris-HCl,Tris-HCl与CH3OHH2O的体积比为1:1。进一步地,所述的检测溶液中,CH3OH与H2O的体积比为1:1。有益效果:本发明是基于纳米金颗粒、L-半胱氨酸和罗丹明6G的荧光探针具备对Cu2+的灵敏检测,为环境中的Cu2+的高灵敏检测技术手段的发展做出贡献。本发明和现有技术相比,具有以下优点:1本发明通过L半胱氨酸的桥接作用,将醛基化的罗丹明6G修饰到纳米金颗粒表面,制备得到一个带有酰胺螺环的荧光探针分子,该探针分子对水环境中的Cu2+有很好的选择性识别能力。2在Tris-HCl缓冲体系下,经过合理优化Cu2+的检测条件,操作简单,只需要借助荧光光谱仪即可实现,灵敏度高。附图说明图1为本发明制备的GNPs-L-Cys-Rh6G2荧光探针对铜离子的作用机理图。图2为本发明的实施例1所制备的纳米金TEM图,从图中可以看出制备的纳米金形态均一,分散性较好,直径约13nm。图3为本发明的实施例2GNPs-L-Cys-Rh6G2荧光探针对铜离子的选择性识别图谱,从图中可以看出,探针对Cu2+的相应强,对Al3+、Cr3+、Cu2+、Co2+、Ca2+、Ni2+、Mg2+、Mn2+、Fe2+、Hg2+、Zn2+、Na+和K+响应小。图4为本发明的实施例3GNPs-L-Cys-Rh6G2荧光探针对Cu2+响应时间测定图,从图可以看出,24h后荧光强度趋于稳定。图5为本发明的实施例4GNPs-L-Cys-Rh6G2荧光探针荧光强度与pH关系曲线图,从图中可以看出,在pH为6.32-13.24之内,探针的分子无荧光,结构相对稳定。图6为本发明的实施例5不同缓冲相下GNPs-L-Cys-Rh6G2荧光探针对铜离子检测的荧光光谱图,从图中可以看出,GNPs-L-Cys-Rh6G2荧光探针对Cu2+的检测在Tris-HCl缓冲溶液中荧光最强。具体实施方式为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明,但本发明保护范围不限于这些实施例。本发明的一种基于GNPs-L-Cys-Rh6G2荧光探针,具有如下如式I所示:本发明的一种基于GNPs-L-Cys-Rh6G2荧光探针的制备方法,包括如下步骤:1纳米金颗粒GNPs的制备:将质量百分比为0.01%氯金酸溶液500mL在600rmin的转速下搅拌并加热至沸腾,迅速加入17.5mL1%的柠檬酸钠溶液,搅拌加热至溶液颜色变为橙红色,自然搅拌冷却,4℃以下棕色瓶保存;制备纳米金颗粒的粒径为11nm-15nm。2罗丹明6G2Rh6G2的制备:合成Rh6G,Rh6G与水合肼反应生成内酰胺螺环分子R1,R1与乙二醛反应得到Rh6G2;制备的Rh6G2是Rh6G经过醛基化处理得到,所述的醛基化试剂为乙二醛。所述的纳米金颗粒与Rh6G2的桥接分子为L-Cys,所述的L-Cys的浓度为1.0mM。3GNPs-L-Cys-Rh6G2荧光探针分子的制备:取纳米金溶液、L-Cys溶液各1mL混匀,常温下自组装反应1小时后,加入1mLRh6G20.1mM甲醇溶液和1mL甲醇,常温下自组装反应1小时,制得基于GNPs-L-Cys-Rh6G2荧光探针。所述的纳米金颗粒、L-Cys0.1mM、Rh6G20.1mM的体积比为1:1:1。本发明所述的基于GNPs-L-Cys-Rh6G2荧光探针在检测重金属Cu2+的应用。检测溶液为CH3OHH2O,检测溶液pH为7,所述的缓冲溶液为Tris-HCl,Tris-HCl与CH3OHH2O的体积比为1:1。所述的检测溶液中,CH3OH与H2O的体积比为1:1。实施例1实验仪器名程与型号:日本电子株式会社JEM-2100投射电子显微镜;HitachiHigh-TechScienceCorporation5J1-004F-7000荧光分光光度计;日本SHIMADZU公司UV2100紫外-可见分光光度计;BRUKERAV400V核磁共振仪。A、纳米金的制备:按照参考文献GrabarKC,FreemanRG,HommerMB,etal.PreparationandCharacterizationofAuColloidMonolayers[J].AnalyticalChemistry,1995,674:735-743制备纳米金颗粒。将质量百分比为0.01%氯金酸溶液500mL在600rmin的转速下搅拌并加热至沸腾,迅速加入17.5mL1%的柠檬酸钠溶液,搅拌加热至溶液颜色变为橙红色,自然搅拌冷却,4℃以下棕色瓶保存。。B、Rh6G2的合成:按文献李宏林.基于罗丹明螺环隐色体的荧光增强型分子探针的研究[D].大连理工大学,2010报道的方法合成Rh6G,Rh6G与水合肼反应生成内酰胺螺环分子R1。R1与乙二醛反应得到Rh6G2。Rh6G2核磁分析数据如下:1H-NMR400MHz,CDCl3,25℃,TMS,δppm:9.40d,1H,J=7.6Hz,CHO,8.05d,1H,J=7.2Hz,C6H4,7.47-7.55m,2H,C6H4,7.28d,1H,J=7.6Hz,CHNN,7.04d,1H,J=7.6Hz,C6H4,6.36s,2H,Xanthene-H,6.24s,2H,Xanthene-H,3.56s,2H,NH,3.22-3.17m,4H,CH2,1.87s,6H,CH3,1.31t,6H,J=6.8Hz,CH3;13C-NMR100MHz,CDCl3}25℃,TMS,δ:192.60,166.19,153.19,151.09,148.09,141.07,135.21,128.79,127.20,126..21,124.26,118.47,104.27,97.09,77.16,66.21,38.42,16.82,14.83.Q-TOFMS:[M+H]+理论值:469.2240,观测值:469.2225。C、GNPs-L-Cys-Rh6G2探针分子合成:取纳米金溶液、L-Cys溶液各1mL混匀,常温下自组装反应1小时后,加入1mLRh6G20.1mM甲醇溶液和1mL甲醇,常温下自组装反应1小时,制得基于GNPs-L-Cys-Rh6G2荧光探针。实施例2GNPs-L-Cys-Rh6G2探针分子对Cu2+的选择性识别:在Triss-HclpH=7.00与甲醇体积比为1:1的体系中,探针分子浓度为25μM,分别加入500μM的Fe3+、Al3+、Cr3+、Cu2+、Co2+、Ca2+、Ni2+、Mg2+、Mn2+、Fe2+、Hg2+、Zn2+、Na+和K+,反应一段时间后检测其荧光光谱。实施例3GNPs-L-Cys-Rh6G2荧光探针对Cu2+相应时间:在Triss-HClpH=7.00与甲醇体积比为1:1的体系中,探针分子的浓度为25μM,分别加入500μM的Cu2+,测定荧光强度随时间推移的变化。实施例4pH对探针GNPs-L-Cys-Rh6G2荧光光谱的影响:将实施例1中C步骤制备的GNPs-L-Cys-Rh6G2荧光探针用现配的盐酸和氢氧化钠溶液调节pH值,测定其pH在1.36-13.24时探针分子的荧光光谱。实施例5缓冲溶液对GNPs-L-Cys-Rh6G2荧光探针的影响:分别在水与甲醇体积比为1:1的体系中,Triss与甲醇体积比为1:1的体系中,HEPESpH=7.00与甲醇体积比为1:1的体系中,加入实例1中C步骤制备的GNPs-L-Cys-Rh6G2荧光探针,探针浓度为25μM,Cu2+浓度为500μM,反应24h后检测其荧光光谱。以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,本发明要求保护范围由所附的权利要求书、说明书及其等效物界定。

权利要求:1.一种基于GNPs-L-Cys-Rh6G2荧光探针,其特征在于:所述的基于GNPs-L-Cys-Rh6G2荧光探针具有结构式如式I所示:2.一种基于GNPs-L-Cys-Rh6G2荧光探针的制备方法,其特征在于包括如下步骤:1纳米金颗粒GNPs的制备:将质量百分比为0.01%氯金酸溶液500mL在600rmin的转速下搅拌并加热至沸腾,迅速加入17.5mL1%的柠檬酸钠溶液,搅拌加热至溶液颜色变为橙红色,自然搅拌冷却,4℃以下棕色瓶保存;2罗丹明6G2Rh6G2的制备:合成Rh6G,Rh6G与水合肼反应生成内酰胺螺环分子R1,R1与乙二醛反应得到Rh6G2;3GNPs-L-Cys-Rh6G2荧光探针分子的制备:取纳米金溶液、L-Cys溶液各1mL混匀,常温下自组装反应1小时后,加入1mLRh6G20.1mM的甲醇溶液和1mL甲醇,常温下自组装反应1小时,制得基于GNPs-L-Cys-Rh6G2荧光探针。3.如权利要求2所述的基于GNPs-L-Cys-Rh6G2荧光探针的制备方法,其特征在于:在步骤1中,制备纳米金颗粒的粒径为11nm-15nm。4.如权利要求2所述的基于GNPs-L-Cys-Rh6G2荧光探针的制备方法,其特征在于:在步骤2中,制备的Rh6G2是Rh6G经过醛基化处理得到,所述的醛基化试剂为乙二醛。5.如权利要求2所述的基于GNPs-L-Cys-Rh6G2荧光探针的制备方法,其特征在于:在步骤2中,所述的纳米金颗粒与Rh6G2的桥接分子为L-Cys,所述的L-Cys的浓度为1.0mM。6.如权利要求2所述的基于GNPs-L-Cys-Rh6G2荧光探针的制备方法,其特征在于:在步骤3中,所述的纳米金颗粒、L-Cys0.1mM、Rh6G20.1mM的体积比为1:1:1。7.权利要求1所述的基于GNPs-L-Cys-Rh6G2荧光探针在检测重金属Cu2+的应用。8.如权利要求7所述的基于GNPs-L-Cys-Rh6G2荧光探针在检测重金属Cu2+的应用,其特征在于:检测溶液为CH3OHH2O,检测溶液pH为7,所述的缓冲溶液为Tris-HCl,Tris-HCl与CH3OHH2O的体积比为1:1。9.如权利要求8所述的基于GNPs-L-Cys-Rh6G2荧光探针在检测重金属Cu2+的应用,其特征在于:所述的检测溶液中,CH3OH与H2O的体积比为1:1。

百度查询: 云南民族大学 一种基于GNPs-L-Cys-Rh6G2荧光探针及其制备方法和应用

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。