买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】自由飞试验相似律重力补偿设计方法_中国航天空气动力技术研究院_201810051623.X 

申请/专利权人:中国航天空气动力技术研究院

申请日:2018-01-19

公开(公告)日:2020-03-24

公开(公告)号:CN108318219B

主分类号:G01M9/08(20060101)

分类号:G01M9/08(20060101)

优先权:

专利状态码:有效-授权

法律状态:2020.03.24#授权;2018.08.17#实质审查的生效;2018.07.24#公开

摘要:自由飞试验相似律重力补偿设计方法,通过下述方式实现:1根据飞行器实际飞行时的加速度和初始分离速度,确定满足弗劳德数相似的试验所需重力加速度a1以及初始分离速度v1,进而确定试验条件下的飞行器的理想运动轨迹s1;2根据飞行器的飞行攻角结合飞行器的外形,确定分离干扰位置l;3确定试验条件下的飞行器的运动轨迹s2,该运动轨迹的加速度为重力加速度、通过调整飞行器的初始分离速度,使得该运动轨迹与步骤1中的理想运动轨迹达到分离干扰位置时的时间相同。本发明减小了模型线位移与角位移不对应性,提高了试验可信度,达到提高线位移的目的。

主权项:1.自由飞试验相似律重力补偿设计方法,其特征在于通过下述方式实现:1根据飞行器实际飞行时的加速度和初始分离速度,确定满足弗劳德数相似的试验所需重力加速度a1以及初始分离速度v1,进而确定试验条件下的飞行器的理想运动轨迹s1;2根据飞行器的飞行攻角结合飞行器的外形,确定分离干扰位置l;3确定试验条件下的飞行器的运动轨迹s2,该运动轨迹s2的加速度为重力加速度g、通过调整飞行器的初始分离速度,使得该运动轨迹与步骤1中的理想运动轨迹达到分离干扰位置的时间相同;步骤3具体通过下述步骤实现:3.1求解步骤1中的理想运动轨迹在分离干扰位置处的时间t0;3.2根据重力加速度g、未知的飞行器的初始分离速度确定试验条件下的飞行器的运动轨迹方程;3.3根据时间t0,求解上述运动轨迹方程在分离干扰位置处的初始分离速度v2;3.4根据重力加速度g以及初始分离速度v2,确定试验条件下的飞行器的运动轨迹。

全文数据:自由飞试验相似律重力补偿设计方法技术领域[0001]本发明涉及自由飞试验参数设计,尤其涉及一种自由飞试验相似律重力补偿设计方法,属于航空航天工程领域。背景技术[0002]飞行器模型风洞试验在飞行器研制初期发挥着重要作用,风洞试验的一大特征是将真实飞行器的各种参数进行相似缩比,针对缩比模型进行试验,试验所得数据经相似缩比公式反向运算便可得真实飞行器的各类气动参数。风洞自由飞模型试验中,模型尺寸往往比真实飞行器小很多,实际中经常需将几米长的真实导弹缩比成圆珠笔长短粗细尺寸的试验模型。风洞模型虽满足外形相似,但由于模型各物理量具有相关性,模型缩小后要求其具有极高重力加速度。以往风洞试验表明,试验所需的重力加速度约为IOg〜30g之间,也就是普通重力加速度g=9·8ms2的10到30倍。[0003]由于无法满足重力方向的加速度相似要求,以往的风洞试验加速度等于重力加速度,从而导致模型竖直方向运动的线位移与角位移不对应。在重点考虑的模型分离区内,存在着复杂的激波干扰流动,线位移直接影响模型处在哪个干扰区,而角位移在气动领域则是非常重要的一个参数,直接影响模型气动力的大小。因此以往试验并不能完全满足相似律要求,使得模型投放分离过程中竖直方向的位移轨迹存在一定偏差,对试验结果的预测精准度有一定影响。发明内容[0004]本发明的技术解决问题是:克服现有技术的不足,提供一种自由飞试验相似律重力补偿设计方法。[0005]本发明的技术解决方案是:自由飞试验相似律重力补偿设计方法,通过下述方式实现:[0006]1根据飞行器实际飞行时的加速度和初始分离速度,确定满足弗劳德数相似的试验所需重力加速度B1以及初始分离速度V1,进而确定试验条件下的飞行器的理想运动轨迹si;[0007]2根据飞行器的飞行攻角结合飞行器的外形,确定分离干扰位置1;[0008]3确定试验条件下的飞行器的运动轨迹s2,该运动轨迹的加速度为重力加速度、通过调整飞行器的初始分离速度,使得该运动轨迹与步骤(1中的理想运动轨迹达到分离干扰位置的时间相同。[0009]进一步的,飞行器自由飞试验中,将0-1.51范围内的运动轨迹s2作为理想运动轨迹si。[0010]进一步的,分离干扰位置1在0.5-2LO范围内选取,LO为飞行器分离物体的参考长度。[0011]进一步的,L0L1在0.7-1.0范围内时,1=0.5-1LO;L0L10.7且飞行攻角小于5°时,1=1-2L0。[0012]进一步的,步骤⑶具体通过下述步骤实现:[0013]3.1求解步骤⑴中的理想运动轨迹在分离干扰位置处的时间t0;[0014]3.2根据重力加速度g、未知的飞行器的初始分离速度确定试验条件下的飞行器的运动轨迹方程;[0015]3.3根据时间to,求解上述运动轨迹方程在分离干扰位置处的初始分离速度v2;[0016]3.4根据重力加速度g以及初始分离速度v2,确定试验条件下的飞行器的运动轨迹。[0017]进一步的,重力加速度ai以及初始分离速度VI具体通过下述公式计算:ai=gki,kv=V〇Vl;[0018]其中,为模型尺寸缩比,kqc„为模型动压与真实实物所受动压比值,km为模型质量与真实实物质量比值;VO为飞行器实际飞行时的初始分离速度。[0019]进一步的,方法适用于马赫数Ma为0.7-2.0之间的飞行器的投放分离自由飞试验。[0020]本发明与现有技术相比有益效果为:[0021]本发明公开了一种自由飞试验相似律重力补偿设计方法。在重点考虑的分离干扰区域内,将分离速度变为过程量,合理调整模型竖直方向初始运动速度参数,补偿重力加速度不足引起的重力方向线位移不足,从而大大提高自由飞试验的准确度。调整后的模型初始运动速度物理意义不等同与真实飞行器的初始分离速度,而是将真实飞行器的初始分离速度通过相似换算后变换为数学方程的过程量。根据本设计方法,即使真实飞行器的初始分离速度为〇,即重力投放,为了在重点考虑的分离干扰区域内达到相等的线位移,试验分离时模型也应具有一定量值的分离速度。本相似律重力补偿设计方法减小了模型线位移与角位移不对应性,提高了试验可信度;分离模型无实物干扰,保证模型自由运动;创新性的合理调整分离速度,达到提高线位移的目的。[0022]需要指出的是,这里提到的调整模型初始运动的速度并不是盲目的调整,且其物理意义不等同与真实飞行器的初始分离速度,而是将真实飞行器的初始分离速度通过相似换算后,变换为数学方程的过程量。不能将最终得到的分离速度看成真实飞行器初始分离速度的比例放大。[0023]具体的:[0024]1减小了线位移与角位移不对应性,提高了试验可信度。线位移和角位移是对分离非常重要的两个参数,以往试验由于线加速度不足只能保证角位移相似,而线位移误差极大。本自由飞试验相似律重力补偿设计方法在重点考虑的分离干扰区域内,合理调整模型竖直方向初始运动速度参数,补偿由于重力加速度不足引起的重力方向线位移不足的缺陷,从而大大提高自由飞试验的可信度。[0025]2分离模型无实物干扰,保证模型自由运动。本自由飞试验相似律重力补偿设计方法通过合理设计达到了风洞捕获轨迹法达到的类似试验效果,即,可保证线位移与角位移基本一致。而又具有优于捕获轨迹法的显著特点:无支撑干扰、分离模型完全自由,优势显著。附图说明[0026]图1为本发明流程图;[0027]图2为某次试验位移随时间变化曲线图。具体实施方式[0028]下面结合附图及实例对本发明作详细说明。[0029]参见图1〜图2所示,图1为发明流程图,图1为某次试验位移随时间变化曲线图。根据真实飞行器参数加速度ao=g=9.8ms2、初始分离速度vo、及风洞参数及模型参数,确定满足弗劳德数Fr相似的试验所需重力加速度ai=n*g、初始分离速度vi=fνα。11为自然数,通常试验10n30,根据实际经验,m近似等于gki,取m=gh,1^为模型尺寸缩比,即模型尺寸与真实实物尺寸比值,kq~为模型动压与真实实物所受动压比值,km为模型质量与真实实物质量比值,根据能量比相似,可得^:是关于的VO函数,kv=VQVl,已知VO时便可求出V1。在无风载条件下,知道了V1和1便可求出其运动轨迹。自由分离试验中,往往存在需重点考虑的分离安全距离,一般取模型的最长几何尺寸Io为参考长度,Io为母机的最长几何尺寸,L0L1在0.7-1.0范围内时,1=0.5-1LO;L0L10.7、飞行攻角小于5°时,1=1-2LO;。将长度单位进行无量纲化处理,便可得,即为图2中的S1!曲线。[0030]根据相似理论,风洞试验中若能完全模拟S1!曲线,则试验误差为0。得到S1!曲线后便可不用再考虑真实飞行器参数了(ao及vo,相当于将ao及Vo作为试验的过程量)。因此试验过程中要尽量贴近S1!曲线才能减小试验误差,若能完全重合则依据弗劳德数Fr的试验误差为〇。图2中的S3l曲线为以往的不考虑重力加速度补偿的试验曲线,。从图中可以看出S1!曲线与S3l曲线相差极大,且由于二者差值随时间增加而增大,线位移与角位移不匹配,试验误差可想而知。[0031]图2中的S2l曲线为本发明所改进的重力补偿设计方法,从图2中可以看出,在重点考虑的1分离长度内,S2l曲线与理想的S1!曲线误差经历了先增加后减小的过程,并且在重点考虑的1分离长度位置,二者误差为0。从而可以很好的减小了自由飞试验线位移与角位移不对应的问题,整个试验过程可以大幅减小试验误差。[0032]下面具体说明S2l曲线的实现过程。其中待定系数为v2。根据可求出当SI=1时的时间tQ,将t=tQ带回便可求出V2,且可知V2是关于l、g的函数即V2=fI,g。求出V2便可得出:曲线。[0033]本发明未详细说明部分属于本领域技术人员公知常识。

权利要求:1.自由飞试验相似律重力补偿设计方法,其特征在于通过下述方式实现:1根据飞行器实际飞行时的加速度和初始分离速度,确定满足弗劳德数相似的试验所需重力加速度m以及初始分离速度V1,进而确定试验条件下的飞行器的理想运动轨迹Si;⑵根据飞行器的飞行攻角结合飞行器的外形,确定分离干扰位置1;3确定试验条件下的飞行器的运动轨迹s2,该运动轨迹的加速度为重力加速度、通过调整飞行器的初始分离速度,使得该运动轨迹与步骤(1中的理想运动轨迹达到分离干扰位置的时间相同。2.根据权利要求1所述的方法,其特征在于:飞行器自由飞试验中,将0-1.51范围内的运动轨迹s2作为理想运动轨迹si。3.根据权利要求1所述的方法,其特征在于:分离干扰位置1在0.5-2LO范围内选取,LO为飞行器分离物体的参考长度。4.根据权利要求3所述的方法,其特征在于:L0L1在0.7-1.0范围内时,1=0.5-1LO;L0L10.7且飞行攻角小于5°时,1=1-2L0。5.根据权利要求1所述的方法,其特征在于:步骤⑶具体通过下述步骤实现:3.1求解步骤⑴中的理想运动轨迹在分离干扰位置处的时间t0;3.2根据重力加速度g、未知的飞行器的初始分离速度确定试验条件下的飞行器的运动轨迹方程;3.3根据时间t0,求解上述运动轨迹方程在分离干扰位置处的初始分离速度v2;3.4根据重力加速度g以及初始分离速度v2,确定试验条件下的飞行器的运动轨迹。6.根据权利要求1所述的方法,其特征在于:重力加速度ai以及初始分离速度V1具体通过下述公式计算:ai=gki,kv=vovi;其中,,h为模型尺寸缩比,kq~为模型动压与真实实物所受动压比值,km为模型质量与真实实物质量比值;VQ为飞行器实际飞行时的初始分离速度。7.根据权利要求1所述的方法,其特征在于:方法适用于马赫数Ma为0.7-2.0之间的飞行器的投放分离自由飞试验。

百度查询: 中国航天空气动力技术研究院 自由飞试验相似律重力补偿设计方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。