买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】高分子聚合物粉末材料及其制备方法_湖南华曙高科技有限责任公司_201811331785.5 

申请/专利权人:湖南华曙高科技有限责任公司

申请日:2018-11-09

公开(公告)日:2020-06-30

公开(公告)号:CN109535709B

主分类号:C08L77/06(20060101)

分类号:C08L77/06(20060101);C08L77/02(20060101);C08L75/04(20060101);C08L23/12(20060101);C08L23/06(20060101);C08L81/06(20060101);C08L81/02(20060101);C08L61/16(20060101);C08K7/06(20060101);C08K3/08(20060101);C08K3/04(20060101);C08K3/36(20060101);C08K3/22(20060101);B29B7/06(20060101);B29B7/28(20060101)

优先权:

专利状态码:有效-授权

法律状态:2020.06.30#授权;2019.04.23#实质审查的生效;2019.03.29#公开

摘要:本发明提供了一种高分子聚合物粉末材料的制备方法,包括如下步骤:将10份高分子粉末材料和0.1~5份炭黑加入到搅拌桶中进行第一次高速搅拌,制得高分子炭黑混合粉末材料;将所述高分子炭黑混合粉末材料、0.1~1份流动助剂、5~40份热介质材料和90份高分子粉末材料加入混粉桶中,进行第二次高速搅拌后筛分,制得高分子聚合物粉末材料。采用高速搅拌的方式,将炭黑均匀附着在高分子聚合物粉末和热介质的表面,使得现有技术中的高分子粉末应用于光纤激光器烧结,制件表面质量好,结构更精细,综合性能优异,抗拉模量高,同时扩大了光纤激光器烧结材料的种类和应用领域。

主权项:1.一种高分子聚合物粉末材料的制备方法,其特征在于,包括以下步骤:(1)将10份高分子粉末材料和0.1~5份炭黑加入到搅拌桶中进行第一次高速搅拌,制得高分子炭黑混合粉末材料,所述第一次高速搅拌的具体工艺参数为:搅拌桶温度保持在30~40℃,搅拌速率为1500~2000rmin,搅拌时间为0.5~5min,所述炭黑的平均粒径为60~100nm;(2)将所述高分子炭黑混合粉末材料、0.1~1份流动助剂、5~40份热介质材料和90份高分子粉末材料加入混粉桶中,进行第二次高速搅拌后筛分,制得高分子聚合物粉末材料,所述第二次高速搅拌的工艺分为两个阶段:第一阶段,混粉桶温度保持在70~80℃,搅拌速率为1200~1500rmin,搅拌时间为1~20min;第二阶段,混粉桶温度保持在30~40℃,搅拌速率为600~800rmin,搅拌时间为3~150min。

全文数据:高分子聚合物粉末材料及其制备方法技术领域本发明属于增材制造技术领域,具体涉及一种高分子聚合物粉末材料及其制备方法。背景技术用激光选择性地烧结熔合多个粉末层是制造三维物体的一种方法,该方法允许不使用工具加工而只需根据待生产物体的三维图像通过激光烧结粉末的多个重叠层,来获得三维实体。该方法主要使用热塑性聚合物来完成。专利US6136948和WO9606881对这种使用粉末状聚合物制造三维物体的方法进行了详细的描述。现有主流的选择性激光烧结主要使用是CO2激光器,波长为10600nm,对应中红外区波段。高分子聚合物中聚酰胺粉末材料对该范围的波长吸收率较高,而其他高分子对该波长吸收率差,导致现有高分子聚合物较难应用到选择性激光烧结技术中。在CN106626379A专利中提到一种光纤激光器烧结尼龙的方案,尼龙无法吸收波长为1064nm的激光能量,需要使用热介质的方法,提高尼龙粉末激光吸收率。因为加入吸热介质,尼龙中的热介质有效的吸收激光能量并传递给需要熔合的聚酰胺粉末。光纤激光器可以使用更小的激光光斑,实现了使用更小聚焦光斑的激光实现聚酰胺三维物体的制造,提高了制造精度。但是如果无法解决热介质与高分子聚合物混合均匀的问题,会导致烧结表面表面质量和表面差,也无法打印出精细结构。同时由于热介质混合的不均匀,导致烧结效果稳定性差。因此,急需开发一种具有能使得热介质和高分子粉末材料混合均匀的吸热材料。发明内容本发明提供一种高分子聚合物粉末材料及其制备方法,通过本发明搅拌工艺使炭黑分布在高分子粉末材料和热介质的表面更均匀,使得高分子粉末材料和热介质能吸收光纤激光器发出的可见光,从而使用较低功率的光纤激光器烧结制备高分子聚合物复合材料工件。与现有通过CO2激光直接照射高分子聚合物粉末,高分子聚合物粉末吸收激光能量直接熔合方法不同的是,本方法中照射区域的高分子聚合物粉末上接受该波段的激光照射后高分聚合物粉末表面的炭黑吸收部分激光能量得更高的温度后,再通过热传导将能量转移给高分子聚合物粉末,从而实现高分子聚合物粉末的熔合。这样不仅使得尼龙树脂粉末材料能吸收可见光波长的光纤激光器能量,同时可以使得其它高分子聚合物粉末也能吸收,例如热塑性聚氨酯树脂粉末、聚丙烯树脂粉末、聚乙烯树脂粉末、乙烯-醋酸乙烯共聚物树脂粉末、聚醚砜树脂粉末、聚苯硫醚树脂粉末或聚醚醚酮树脂粉末。本发明提供了一种高分子聚合物粉末材料的制备方法,其特征在于,包括如下步骤:将10份高分子粉末材料和0.1~5份炭黑加入到搅拌桶中进行第一次高速搅拌,制得高分子炭黑混合粉末材料;将所述高分子炭黑混合粉末材料、0.1~1份流动助剂、5~40份热介质材料和90份高分子粉末材料加入混粉桶中,进行第二次高速搅拌后筛分,制得高分子聚合物粉末材料。作为本发明的进一步优选方案,所述第一次高速搅拌的具体工艺参数为:搅拌桶温度保持在30~40℃,搅拌速率为1500~2000rmin,搅拌时间为0.5~5min。由于炭黑的粒径越小,直接单独打散炭黑的话,炭黑很难分散,会发生团聚,通过将炭黑和高分子粉末材料一起进行第一次高速搅拌,使炭黑和高分子粉末材料混合分布均匀。作为本发明的进一步优选方案,所述第二次高速搅拌的工艺分为两个阶段:第一阶段,混粉桶温度保持在70~80℃,搅拌速率为1200~1500rmin,搅拌时间为1~20min;通过此阶段的加热和高速搅拌,使得高分子粉末材料均匀打散,消除静电,提高炭黑在高分子粉末和热介质的覆盖率。第二阶段,混粉桶温度保持在30~40℃,搅拌速率为600~800rmin,搅拌时间为3~150min。通过相对第一阶段较低温度和较低搅拌速度的环境,经过更长时间的搅拌混合,炭黑、热介质跟高分子粉末材料混合更加均匀,防止高分子粉末材料之间的摩擦,如果在高温高速的环境下,高分子粉末容易破碎或开裂,影响粉末的形貌。作为本发明的进一步优选方案,所述炭黑的平均粒径为60~100nm。由于炭黑的粒径过大,其附着力差,会影响炭黑在高分子粉末材料表面的附着,而本发明中限定炭黑的平均粒径为60~100nm,小颗粒的纳米炭黑,比表面力大,吸收激光能量更多,吸热效率更好。作为本发明的进一步优选方案,所述热介质为碳纤维,三氧化二铁铁粉俗称铁红,四氧化三铁铁粉俗称氧化铁黑,金属粉末。作为本发明的进一步优选方案,所述金属粉末为铁粉,铝粉,铜粉,钨粉,镍粉,钴粉,钛粉中的一种或几种。作为本发明的进一步优选方案,所述炭黑在高分子聚合物粉末表面覆盖率为20~200%,所述炭黑在热介质表面覆盖率为30~300%。作为本发明的进一步优选方案,所述热介质的平均粒径为10~45μm作为本发明的进一步优选方案,所述高分子聚合物粉末的平均粒径为40~75μm。本发明限定的高分子聚合物粉末材料的粒径范围内,粉末流动性好,能保证炭黑和热介质均匀分布在高分子粉末表面。高分子聚合物粉末材料的粒径太小容易导致炭黑团聚,从而影响所制得粉末烧结的制件力学性能;高分子聚合物粉末材料的粒径过大容易导致炭黑覆盖率小,激光能量吸收效率差。作为本发明的进一步优选方案,所述高分子粉末材料为尼龙树脂粉末、热塑性聚氨酯树脂粉末、聚丙烯树脂粉末、聚乙烯树脂粉末、乙烯-醋酸乙烯共聚物树脂粉末、聚醚砜树脂粉末、聚苯硫醚树脂粉末或聚醚醚酮树脂粉末。高分子聚合物中聚酰胺粉末材料对该范围的波长吸收率较高,而其他高分子对该波长吸收率差,导致现有高分子聚合物较难应用到选择性激光烧结技术中,通过本发明的工艺,能扩大高分子聚合物粉末材料的范围。作为本发明的进一步优选方案,所述尼龙树脂粉末为PA6、PA11、PA12、PA66、PA610、PA612、PA1010、PA1012、PA1212中的一种或几种。作为本发明的进一步优选方案,所述流动助剂为气相二氧化硅、气相三氧化二铝或纳米二氧化钛。本发明还提供一种高分子聚合物粉末材料,其采用上述高分子聚合物粉末材料的制备方法制得,所述高分子聚合物粉末材料适用于光纤激光器烧结。作为本发明的进一步优选方案,所述光纤激光器的激光功率为30~1000W,激光光斑大小为30~1500μm,激光扫描速度为10~30ms。本发明提供高分子聚合物粉末材料及其制备方法,具有以下有益效果:1通过本发明的高速搅拌工艺,将炭黑、热介质与高分子聚合物粉末均匀分散,防止了炭黑团聚,进一步地提高了尼龙聚合物粉末的流动性,炭黑在尼龙粉末材料表面的覆盖率极高。2通过加入热介质和炭黑,可以使得现有技术中不能吸收激光器能量的高分子聚合物粉末,能够很容易吸收激光器的能量,能较好的使用光纤激光器烧结制备工件,扩大了该技术的材料应用种类和应用范围。3热介质的加入,不仅可以吸收可见光波长的激光能量使得粉末熔化的更好,同时热介质起到了增强的作用,提高了高分子聚合物材料的机械强度和模量,同时高分子聚合物粉末材料的抗冲击能也会更好。具体实施方式对比例11100份平均粒径为60μm的尼龙1212粉末、1份气相二氧化硅剂、20份平均粒径为40μm的碳纤维和1份平均粒径为80nm的炭黑进行搅拌混合,得到一种选择性激光烧结的尼龙1212粉末。实施例11将10份平均粒径为60μm的尼龙1212粉末和1份平均粒径为60nm的炭黑加入到搅拌桶中进行搅拌,搅拌桶温度保持在30℃,搅拌速率为2000rmin,搅拌时间为0.5min,制得尼龙1212炭黑混合粉末;2所述10份尼龙1212炭黑混合粉末、1份气相二氧化硅、20份平均粒径为40μm的碳纤维和90份尼龙1212粉末添加至混粉桶中,采用高速搅拌的工艺后筛分,平均粒径为60μm,高速搅拌第一阶段,混粉桶温度保持在70℃,搅拌速率为1500rmin,搅拌时间为2min;高速搅拌第二阶段,混粉桶温度保持在40℃,搅拌速率为800rmin,搅拌时间为3min,得到一种尼龙1212聚合物粉末材料。采用光纤激光器对所制备的尼龙1212聚合物粉末材料进行烧结,制得烧结工件样条并进行性能测试,结果见表1。实施例21尼龙6粉末和炭黑的总质量份数为100份,将5份平均粒径为40nm的尼龙6粉末和0.1份平均粒径为60的炭黑加入到搅拌桶中进行搅拌,搅拌桶温度保持在32℃,搅拌速率为1600rmin,搅拌时间为1min,制得尼龙6炭黑混合粉末;2所述10份尼龙6炭黑混合粉末、0.1份气相二氧化钛、5份平均粒径为10μm的三氧化二铁粉末和90份尼龙6粉末添加至混粉桶中,采用高速搅拌的工艺后筛分,平均粒径为40μm,高速搅拌第一阶段,混粉桶温度保持在72℃,搅拌速率为1300rmin,搅拌时间为3min;高速搅拌第二阶段,混粉桶温度保持在33℃,搅拌速率为640rmin,搅拌时间为5min,得到一种尼龙6聚合物粉末材料。采用光纤激光器对所制备的尼龙6聚合物粉末材料进行烧结,制得烧结工件样条并进行性能测试,结果见表1。实施例31将20份平均粒径为40μm热塑性聚氨酯粉末和0.1份平均粒径为65nm炭黑加入到搅拌桶中进行搅拌,搅拌桶温度保持在40℃,搅拌速率为1500rmin,搅拌时间为2min,制得热塑性聚氨酯炭黑混合粉末;2所述20份热塑性聚氨酯炭黑混合粉末、0.1份气象三氧化二铝、10份平均粒径为15μm的四氧化三铁粉末和80份热塑性聚氨酯粉末添加至混粉桶中,采用高速搅拌的工艺后筛分,平均粒径为40μm,高速搅拌第一阶段,混粉桶温度保持在80℃,搅拌速率为1200转min,搅拌时间为5min;高速搅拌第二阶段,混粉桶温度保持在30℃,搅拌速率为800转min,搅拌时间为15min,得到一种热塑性聚氨酯聚合物粉末材料。采用光纤激光器对所制备的热塑性聚氨酯聚合物粉末材料进行烧结,制得烧结工件样条并进行性能测试,结果见表1。实施例41将20份平均粒径为45μm聚丙烯树脂粉末和0.5份平均粒径为70nm炭黑加入到搅拌桶中进行搅拌,搅拌桶温度保持在35℃,搅拌速率为1600rmin,搅拌时间为2min,制得聚丙烯树脂炭黑混合粉末;2所述20份聚丙烯树脂炭黑混合粉末、0.2份气象二氧化硅、15份平均粒径为20μm的铁粉末和80份聚丙烯树脂粉末添加至混粉桶中,采用高速搅拌的工艺后筛分,平均粒径为45μm,高速搅拌第一阶段,混粉桶温度保持在70℃,搅拌速率为1300转min,搅拌时间为8min;高速搅拌第二阶段,混粉桶温度保持在35℃,搅拌速率为760转min,搅拌时间为30min,得到一种聚丙烯树脂聚合物粉末材料。采用光纤激光器对所制备的聚丙烯树脂聚合物粉末材料进行烧结,制得烧结工件样条并进行性能测试,结果见表1。实施例51将20份平均粒径为50μm聚乙烯树脂粉末和1份平均粒径为75nm炭黑加入到搅拌桶中进行搅拌,搅拌桶温度保持在36℃,搅拌速率为1700rmin,搅拌时间为3min,制得聚乙烯树脂炭黑混合粉末;2所述20份聚乙烯树脂炭黑混合粉末、0.3份气相二氧化硅、20份平均粒径为25μm的铜粉末和80份聚乙烯树脂粉末添加至混粉桶中,采用高速搅拌的工艺后筛分,平均粒径为50μm,高速搅拌第一阶段,混粉桶温度保持在80℃,搅拌速率为1200转min,搅拌时间为10min;高速搅拌第二阶段,混粉桶温度保持在30℃,搅拌速率为800转min,搅拌时间为45min,得到一种聚乙烯树脂聚合物粉末材料。采用光纤激光器对所制备的聚乙烯树脂聚合物粉末材料进行烧结,制得烧结工件样条并进行性能测试,结果见表1。实施例61将20份平均粒径为65μm聚醚砜树脂粉末和3份平均粒径为90nm炭黑加入到搅拌桶中进行搅拌,搅拌桶温度保持在40℃,搅拌速率为1900rmin,搅拌时间为4min,制得聚醚砜树脂炭黑混合粉末;2所述20份聚醚砜树脂炭黑混合粉末、0.1份气相二氧化硅、25份平均粒径为30μm的镍粉末和80份聚醚砜树脂粉末添加至混粉桶中,采用高速搅拌的工艺后筛分,平均粒径为650μm,高速搅拌第一阶段,混粉桶温度保持在80℃,搅拌速率为1200转min,搅拌时间为14min;高速搅拌第二阶段,混粉桶温度保持在30℃,搅拌速率为800转min,搅拌时间为60min,得到一种聚醚砜树脂聚合物粉末材料。采用光纤激光器对所制备的聚醚砜树脂聚合物粉末材料进行烧结,制得烧结工件样条并进行性能测试,结果见表1。实施例71将20份平均粒径为70μm聚苯硫醚树脂粉末和5份平均粒径为100nm炭黑加入到搅拌桶中进行搅拌,搅拌桶温度保持在40℃,搅拌速率为2000rmin,搅拌时间为5min,制得聚苯硫醚树脂炭黑混合粉末;2所述20份聚苯硫醚树脂炭黑混合粉末、1份气相二氧化硅、30份平均粒径为35μm的钴粉末和80份聚苯硫醚树脂粉末添加至混粉桶中,采用高速搅拌的工艺后筛分,平均粒径为70μm,高速搅拌第一阶段,混粉桶温度保持在75℃,搅拌速率为1200转min,搅拌时间为18min;高速搅拌第二阶段,混粉桶温度保持在40℃,搅拌速率为600转min,搅拌时间为100min,得到一种聚苯硫醚树聚合物脂粉末材料。采用光纤激光器对所制备的聚苯硫醚树聚合物脂粉末材料进行烧结,制得烧结工件样条并进行性能测试,结果见表1。实施例81将20份平均粒径为75μm聚醚醚酮树脂粉末和3份平均粒径为100nm炭黑加入到搅拌桶中进行搅拌,搅拌桶温度保持在30℃,搅拌速率为2000rmin,搅拌时间为5min,制得聚醚醚酮树脂炭黑混合粉末;2所述20份聚醚醚酮树脂炭黑混合粉末、0.1份气相二氧化硅、40份平均粒径为45μm的钨粉末和80份热塑性聚醚醚酮树脂粉末添加至混粉桶中,采用高速搅拌的工艺后筛分,平均粒径为75μm,高速搅拌第一阶段,混粉桶温度保持在80℃,搅拌速率为1400转min,搅拌时间为20min;高速搅拌第二阶段,混粉桶温度保持在35℃,搅拌速率为700转min,搅拌时间为150min,得到一种聚醚醚酮树脂聚合物粉末材料。采用光纤激光器对所制备的聚醚醚酮树脂聚合物粉末材料进行烧结,制得烧结工件样条并进行性能测试,结果见表1。表1:采用本发明高分子聚合物粉末材料制备的三维零件的性能参数。通过本发明的搅拌工艺,将炭黑与高分子聚合物粉末均匀分散,防止了炭黑团聚,炭黑均匀的包覆在聚酰胺粉末的表面,炭黑对光纤激光能量吸收高效。通过加入热介质和炭黑,可以使得现有技术中不能吸收激光器能量的高分子聚合物粉末,能够很容易吸收激光器的能量,能较好的使用光纤激光器烧结制备工件,扩大了该技术的材料应用种类和应用范围。热介质的加入,不仅可以吸收可见光波长的激光能量使得粉末熔化的更好,同时热介质的起到了增强的作用,提高了高分子聚合物材料的机械强度和模量,同时高分子的抗冲击能也会更好。通过加入炭黑,可以使得现有技术中不能吸收激光器能量的高分子聚合物粉末,能够很容易吸收激光器的能量,能较好的使用光纤激光器烧结制备工件,扩大了该技术的材料应用种类和应用范围,在本发明的实施例中,光纤激光器的激光功率优选100~300W,激光光斑为40~60μm,并以10~25ms左右的速度控制激光对三维零件的横截面区域进行照射。当一层在激光的照射下熔合完毕后,铺粉器将聚酰胺和碳纤维的混合粉在工作平面上铺送0.1mm的厚度,激光继续对三维零件在新的粉层上的横截面区域进行照射。重复上述步骤直至获得采用高分子聚合物粉末材料制备的三维零件,发现相较于使用CO2激光器,三维零件在特征结构处表现更好。

权利要求:1.一种高分子聚合物粉末材料的制备方法,其特征在于,包括以下步骤:1将10份高分子粉末材料和0.1~5份炭黑加入到搅拌桶中进行第一次高速搅拌,制得高分子炭黑混合粉末材料;2将所述高分子炭黑混合粉末材料、0.1~1份流动助剂、5~40份热介质材料和90份高分子粉末材料加入混粉桶中,进行第二次高速搅拌后筛分,制得高分子聚合物粉末材料。2.根据权利要求1所述的高分子聚合物粉末材料的制备方法,其特征在于,所述第一次高速搅拌的具体工艺参数为:搅拌桶温度保持在30~40℃,搅拌速率为1500~2000rmin,搅拌时间为0.5~5min。3.根据权利要求2所述的高分子聚合物粉末材料的制备方法,其特征在于,所述第二次高速搅拌的工艺分为两个阶段:第一阶段,混粉桶温度保持在70~80℃,搅拌速率为1200~1500rmin,搅拌时间为1~20min;第二阶段,混粉桶温度保持在30~40℃,搅拌速率为600~800rmin,搅拌时间为3~150min。4.根据权利要求3所述的高分子聚合物粉末材料的制备方法,其特征在于,所述炭黑的平均粒径为60~100nm。5.根据权利要求4所述的高分子聚合物粉末材料的制备方法,其特征在于,所述热介质为碳纤维,三氧化二铁铁粉,四氧化三铁铁粉或金属粉末。6.根据权利要求5所述的高分子聚合物粉末材料的制备方法,其特征在于,所述炭黑在高分子聚合物粉末表面覆盖率为20~200%,所述炭黑在热介质表面覆盖率为30~300%。7.根据权利要求6所述的高分子聚合物粉末材料的制备方法,其特征在于,所述热介质材料的平均粒径为10~45μm。8.根据权利要求7所述的高分子聚合物粉末材料的制备方法,其特征在于,所述高分子聚合物粉末材料的平均粒径为40~75μm。9.根据权利要求8所述的高分子聚合物粉末材料的制备方法,其特征在于,所述高分子粉末材料为尼龙树脂粉末、热塑性聚氨酯树脂粉末、聚丙烯树脂粉末、聚乙烯树脂粉末、乙烯-醋酸乙烯共聚物树脂粉末、聚醚砜树脂粉末、聚苯硫醚树脂粉末或聚醚醚酮树脂粉末。10.根据权利要求9所述的高分子聚合物粉末材料的制备方法,其特征在于,所述尼龙树脂粉末为PA6、PA11、PA12、PA66、PA610、PA612、PA1010、PA1012、PA1212中的一种或几种。11.一种高分子聚合物粉末材料,其特征在于,采用权利要求1-10中任一项所述的高分子聚合物粉末材料的制备方法制得,所述高分子聚合物粉末材料适用于光纤激光器烧结。12.根据权利要求11所述的高分子聚合物粉末材料的制备方法,其特征在于,所述光纤激光器的激光功率为30~1000W,激光光斑大小为30~1500μm,激光扫描速度为10~30ms。

百度查询: 湖南华曙高科技有限责任公司 高分子聚合物粉末材料及其制备方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。