买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】一种解耦燃气燃烧器_中国科学院过程工程研究所_201910159515.9 

申请/专利权人:中国科学院过程工程研究所

申请日:2019-03-04

公开(公告)日:2020-07-17

公开(公告)号:CN109882841B

主分类号:F23D14/02(20060101)

分类号:F23D14/02(20060101);F23D14/62(20060101);F23D14/58(20060101)

优先权:

专利状态码:有效-授权

法律状态:2020.07.17#授权;2019.07.09#实质审查的生效;2019.06.14#公开

摘要:本发明公开了一种解耦燃气燃烧器,属于燃烧设备技术领域,包括由外至内依次设置且同轴的外筒体、分隔筒体、燃气外筒体和燃气内筒体,燃气内筒体内形成一级风道,燃气内筒体和燃气外筒体之间形成燃气通道,燃气外筒体和分隔筒体之间形成二级风道,分隔筒体和外筒体之间形成三级风道,解耦燃烧器还包括锥台形筒体,锥台形筒体的小径端连接于分隔筒体伸入炉膛内的一端,锥台形筒体的大径端的外径小于外筒体的内径,在锥台形筒体的轴线方向上,外筒体伸入炉膛内的一端与锥台形筒体的大径端之间的距离可调。本发明提出的解耦燃气燃烧器,通过设置锥台形筒体,使得该解耦燃气燃烧器能够适用于不同的燃气和炉膛结构。

主权项:1.一种解耦燃气燃烧器,包括由外至内依次设置且同轴的外筒体1、分隔筒体2、燃气外筒体3和燃气内筒体4,所述燃气内筒体4内形成一级风道10,所述燃气内筒体4和所述燃气外筒体3之间形成燃气通道40,所述燃气外筒体3和所述分隔筒体2之间形成二级风道20,所述分隔筒体2和所述外筒体1之间形成三级风道30,其特征在于,所述解耦燃气燃烧器还包括锥台形筒体6,所述锥台形筒体6的小径端连接于所述分隔筒体2伸入炉膛内的一端,所述锥台形筒体6的大径端的外径小于所述外筒体1的内径,在所述锥台形筒体6的轴线方向上,所述外筒体1伸入所述炉膛内的一端与所述锥台形筒体6的大径端之间的距离可调。

全文数据:一种解耦燃气燃烧器技术领域本发明涉及燃气燃烧设备技术领域,尤其涉及一种解耦燃气燃烧器。背景技术天然气具有较好的使用性能,热值高、不含燃料氮,重点是控制燃烧温度以避免热力型NOx的生成。对于小容量设备,通过高过量空气系数的全预混表面燃烧可降低理论燃烧温度,并避免产生回火和脱火;浓淡燃烧偏差燃烧和空气燃料分级燃烧需兼顾燃烧的稳定性和各阶段理论燃烧温度。先贫氧燃烧中心着火区贫氧的过程稳定性高,但燃烧温度偏高;先贫燃料燃烧中心着火区贫燃料的过程在降低初中期理论燃烧温度有较大空间,但不同负荷段的燃烧稳定性控制较复杂,更适应在压力较高的燃烧领域,或配有值班火焰。先贫氧的分级燃烧结合烟气再循环具有较稳定的综合性能,负荷调节比可高达10:1,各负荷段下均易实现NOx排放低于30mgm3。该类技术目前还存在再循环烟气量偏大和CO排放不易控制等问题。天然气燃烧技术不适合于大多其它低热值、低压力的燃气领域,针对于燃气燃烧器,工业燃气的来源十分复杂,有的为焦炉煤气、高炉煤气和转炉煤气等冶金工业生产的副产品,有的为炼化干气瓦斯气、生产甲醇、合成氨等化工工艺驰放气、解析气等,有的为煤、生物质和垃圾的热解气化气,有的为煤层气、沼气、荒煤气、垃圾掩埋坑气或其它超低热值的尾气和废气等,组分复杂多变,可燃成分既包括CH4、H2、CO和CmHn等,也含有S、N等,热值范围从低于800Kcalm3到高于8000Kcalm3,相同热值的火焰传播速度也因含H2等组分不同波动可达50%以上而差异很大。该类燃气中许多由于热值低或不稳定,组分和压力波动大,稳燃能力或低氮燃烧能力相对较弱;有的燃气含H2量大,高负荷火焰强度和低负荷回火控制问题突出;有的燃气含有燃料氮,NOx排放控制更为复杂。扩散燃烧有利于抑制燃料型NOx的生成,但传统扩散燃烧以截面较小的燃气向空域较大的空气扩散为核心,虽然通过空气旋流促进双向扩散,但易产生燃烧中期的局部高温高氧,不易控制热力型NOx;部分预混火焰较易控制NOx,但存在回火和脱火的问题,稳定燃烧区间较窄;大型工业燃烧器不适宜采用表面燃烧,且采用高过量空气系数稳燃能力变差,排烟损失增大;含燃料氮的燃气不适宜采用传统的浓淡燃烧,富氧区生成NOx没有解决措施;采用烟气再循环有利于控制NOx的生成,但会降低稳燃能力,且增加了运行电耗。由于空气、燃气扩散混合方式的限制,传统燃烧器在有限空间的分级燃烧效果有限。采用大量远离主燃区的燃尽风方案可实现大区域的分级燃烧宏观分级,有利于抑制燃料型NOx的生成,但在大空间不易使可燃气与助燃空气充分混合均匀,且燃尽时间缩短,会使CO排放增大;另外,由于燃料的不稳定,较难调整分级风量来控制NOx的排放。对于低热值燃气,在低负荷时区域燃烧温度较低,容易灭火,高负荷时喷口燃气流速高容易脱火;有的低热值燃气为提高稳燃能力需采用富氧或掺烧高热值燃气、长明灯等措施,有的采用卫燃带、预热空气和燃气到400~600℃来整体提高燃烧温度,增加了NOx控制的难度。由于环保要求的提高,有的工业燃气炉还需增加较复杂的SCR等烟气脱硝装置,增加了设备投资和运行维护成本。目前,工业上所使用的燃烧器大多仅针对一种燃料设计,燃料成分变化较大和不稳定时的适应能力不足,对燃料型NOx的控制能力较弱,为降低NOx会使CO排放明显增加,或增加运行能耗,若提高稳燃能力和热效率时,又会产生较多的NOx,即存在较为明显的稳燃能力、低氮燃烧和热效率的耦合关系。发明内容本发明的目的在于提供一种解耦燃气燃烧器,实现解耦燃气燃烧器对不同种类的燃气的适应性,在确保稳燃性能和热效率的同时,降低NOx的排放。如上构思,本发明所采用的技术方案是:一种解耦燃气燃烧器,包括由外至内依次设置且同轴的外筒体、分隔筒体、燃气外筒体和燃气内筒体,所述燃气内筒体内形成一级风道,所述燃气内筒体和所述燃气外筒体之间形成燃气通道,所述燃气外筒体和所述分隔筒体之间形成二级风道,所述分隔筒体和所述外筒体之间形成三级风道,所述解耦燃气燃烧器还包括锥台形筒体,所述锥台形筒体的小径端连接于所述分隔筒体伸入炉膛内的一端,所述锥台形筒体的大径端的外径小于所述外筒体的内径,在所述锥台形筒体的轴线方向上,所述外筒体伸入所述炉膛内的一端与所述锥台形筒体的大径端之间的距离可调。作为解耦燃气燃烧器的一种优选方案,所述锥台形筒体的锥壁上沿其周向开设有多个通风孔,所述通风孔为细长形,且其沿所述锥台形筒体的锥壁周向延伸的边为短边,所述通风孔的长边与所述述锥台形筒体的锥壁的延伸方向之间的夹角为0-60°,所述三级风道内的三级风可通过所述通风孔进入所述炉膛。作为解耦燃气燃烧器的一种优选方案,所述燃气内筒体内在伸入所述炉膛的一端设置有通道盖板,所述通道盖板和所述燃气内筒体的内壁之间形成一端具有开口的中心稳焰腔,所述燃气通道连通于所述中心稳焰腔。作为解耦燃气燃烧器的一种优选方案,所述通道盖板的外周面上沿其周向开设有多个侧边通风口,所述侧边通风口连通于所述一级风道,与每个所述一级侧风口正对的位置均设置有一级侧风室,所述一级侧风室包括侧板和顶板,所述顶板一端连接于所述燃气内筒体的内壁,所述侧板连接于所述顶板和所述通道盖板之间,所述侧板一侧连接于所述燃气内筒体的内壁,另一侧与所述燃气内筒体的内壁之间具有间隙,以使由所述间隙流出的一级风沿所述燃气内筒体的内壁顺时针或逆时针旋转流动。作为解耦燃气燃烧器的一种优选方案,所述燃气内筒体内沿其周向设置有多个燃气支喷管,所述燃气支喷管位于所述中心稳焰腔内,所述燃气支喷管可拆卸连接于所述燃气内筒体的内壁,且连通于所述燃气通道,每个所述燃气支喷管喷出的烟气气流具有在所述燃气内筒体轴向上的分量和沿所述燃气内筒体内壁的切向的分量。作为解耦燃气燃烧器的一种优选方案,所述燃气通道靠近所述炉膛的一端之间设置有环形盖板,所述环形盖板上开设有多个燃气孔,每个所述燃气孔均可拆卸连接有一燃气喷管。作为解耦燃气燃烧器的一种优选方案,所述燃气喷管包括燃气内喷管、燃气侧喷管和燃气外喷管,所述燃气内喷管喷出的燃气气流指向所述环形盖板的内侧,所述燃气外喷管喷出的燃气气流指向所述环形盖板的外侧,所述燃气侧喷管喷出的燃气气流使得能够连接所述燃气内喷管和所述燃气外喷管喷出的燃气气流形成连续的火焰。作为解耦燃气燃烧器的一种优选方案,每个所述燃气喷管均为封闭的管状结构,所述管状结构上开设有多个喷孔。作为解耦燃气燃烧器的一种优选方案,所述燃气外筒体上开设有多个连通所述燃气通道和所述二级风道的燃气侧喷口,且所述燃气侧喷口位于所述二级风道伸入所述炉膛内的一端,以使部分燃气与二级风混合。作为解耦燃气燃烧器的一种优选方案,所述解耦燃气燃烧器还包括再循环烟气通道,所述再循环烟气通道连通于所述一级风道和或所述二级风道。本发明的有益效果为:本发明提出的解耦燃气燃烧器,通过设置锥台形筒体,可延长内部一级风、二级风和燃气的混合燃烧时间,使一级风、二级风和燃气混合更为均匀,使得还原反应更为充分。此外,使得三级风道流出的三级风向外侧偏转,可推迟三级风与内侧一级风、二级风和燃气的混合,使得分级燃烧反应由还原性气氛二级风与燃气的混合区逐渐均匀过渡到氧化气氛三级风与燃气和燃气燃烧后的产物的混合区。另外,在锥台形筒体的轴线方向上,调节外筒体伸入到炉膛内的一端与锥台形筒体的距离,当燃气含氮燃料氮量高,热值较高时,增加三级风向外偏转的程度,可增加还原性燃烧区间,同时解耦燃气燃烧器出口的火焰直径增大,使得散热面积增大,有利于降低燃烧温度,同时减少燃料型和热力型NOx的产生;当燃气含氮量低,热值较低时,减小三级风向外偏转的程度,解耦燃气燃烧器出口火焰直径减小,以使燃烧火焰保持稳定,从而使得该解耦燃气燃烧器能够增加对不同的燃气和不同炉膛结构的适应性。附图说明图1是本发明实施例一提供的解耦燃气燃烧器的剖视图;图2是本发明实施例一提供的解耦燃气燃烧器的主视图;图3是本发明实施例二提供的解耦燃气燃烧器的剖视图。图中:1、外筒体;2、分隔筒体;3、燃气外筒体;4、燃气内筒体;5、中心管;6、锥台形筒体;10、一级风道;11、三级风导叶;12、延伸部;20、二级风道;21、第二调节风门;22、二级风导叶;30、三级风道;31、环形盖板;311、燃气孔;32、燃气支喷管;33、燃气内喷管;34、燃气侧喷管;35、燃气外喷管;40、燃气通道;401、燃气侧喷口;410、一级侧风室;420、中心稳焰腔;41、通道盖板;411、通风口;412、侧边通风口;42、一级风导叶;43、侧板;44、顶板;441、旁路通风口;61、通风孔。具体实施方式为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部。在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。在本实施例的描述中,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。实施例一图1为本实施例提供的解耦燃气燃烧器的剖视图;图2为本实施例提供的解耦燃气燃烧器的正视图。本实施例提供了一种解耦燃气燃烧器,其燃料为天然气或者工业燃气,其中工业燃气包括焦炉煤气、高炉煤气和转炉煤气等冶金工业生产的副产品,有的为炼化干气瓦斯气、生产甲醇、合成氨等化工工艺驰放气、解析气等,有的为煤、生物质和垃圾的热解气化气,有的为煤层气、沼气、荒煤气、垃圾掩埋坑气或其它超低热值的尾气和废气等。在安装使用时,解耦燃气燃烧器的一端伸入到燃烧炉或其他炉体内部,将燃料和空气,按所要求的浓度、速度、湍流度和混合方式送入炉膛,并使燃料能在炉膛内稳定着火与燃烧。解耦燃气燃烧器主要包括送风系统、点火系统、监测系统,燃料系统和电控系统,其中点火系统、监测系统和电控系统均为现有技术中的常见结构,在此不再赘述。本实施例主要针对送风系统和燃料系统的结构进行说明。如图1和图2所示,该解耦燃气燃烧器包括由外至内依次设置且同轴的外筒体1、分隔筒体2、燃气外筒体3和燃气内筒体4以及锥台形筒体6,上述外筒体1、分隔筒体2、燃气外筒体3和燃气内筒体4均为圆柱形结构,且外筒体1、分隔筒体2、燃气外筒体3和燃气内筒体4伸入炉膛内的一端均具有开口,但是本实施例对外筒体1、分隔筒体2、燃气外筒体3和燃气内筒体4的结构不限于此,外筒体1、分隔筒体2、燃气外筒体3和燃气内筒体4还可以为均为棱柱形结构,且外筒体1、分隔筒体2、燃气外筒体3和燃气内筒体4的结构相同或者不同。其中,燃气内筒体4内形成一级风道10,一级风道10内设置有第一调节风门,小于解耦燃气燃烧器总风量25%的一级风由一级风道10进入到炉膛内。燃气内筒体4和燃气外筒体3之间形成燃气通道40,燃气由燃气通道40进入到炉膛内。燃气外筒体3和分隔筒体2之间形成二级风道20,二级风道20内设置有第二调节风门21,占解耦燃气燃烧器总风量20%-70%的二级风由二级风道20进入到炉膛内。分隔筒体2和外筒体1之间形成三级风道30,占解耦燃气燃烧器总风量20-70%的三级风由三级风道30进入到炉膛内。上述锥台形筒体6在其轴线方向的两端均开设有通孔,其中锥台形筒体6的小径端锥台形筒体6横截面直径最小的一端连接于分隔筒体2伸入炉膛内的一端,在本实施例中,分隔筒体2、燃气外筒体3和燃气内筒体4的伸入炉膛内的一端的端面位于同一平面上,一级风、二级风、燃气及燃气燃烧后的产物均通过锥台形筒体6进入炉膛内,但是本实施例对分隔筒体2、燃气外筒体3和燃气内筒体4的结构不限于此,分隔筒体2、燃气外筒体3和燃气内筒体4伸入炉膛内的一端的端面可不在同一平面上,但是必须保证一级风、二级风、燃气及燃气燃烧后的产物均通过锥台形筒体6进入炉膛内。锥台形筒体6的大径端锥台形筒体6横截面直径最大的一端的外径小于外筒体1的内径,使得锥台形筒体6的大径端和外筒体1之间形成环形风口,三级风通过环形风口进入到炉膛内。在锥台形筒体6的轴线方向上,外筒体1伸入炉膛内的一端与锥台形筒体6的大径端的距离可调,进而使得三级风能够在锥台形筒体6的作用下发生不同程度的偏转。具体而言,通过调整外筒体1在锥台形筒体6的轴线方向的长度来调整外筒体1伸入到炉膛内的一端和锥台形筒体6的大径端之间的距离来调整三级风的偏转程度,进而调整解耦燃气燃烧器出口的火焰直径。在本实施例中,锥台形筒体1的大径端位于外筒体1的外部如图1所示,此时增大外筒体1伸入炉膛内的一端与锥台形筒体6的大径端距离可增大三级风的偏转程度,使得解耦燃气燃烧器出口的火焰直径增大;减小外筒体1伸入炉膛内的一端与锥台形筒体6的大径端距离可减小三级风的偏转程度,使得解耦燃气燃烧器出口的火焰直径减小。而且,增大或减小外筒体1伸入炉膛内的一端与锥台形筒体6的大径端距离是通过裁切外筒体1或在外筒体1伸入炉膛内的一端增加与外筒体1的内径和外径均相同的圆筒状结构来实现的。当然在其他实施例中,锥台形筒体6的大径端还可以位于外筒体1的外部,此时增大外筒体1伸入炉膛内的一端与锥台形筒体6的大径端距离可减小三级风的偏转程度,使得解耦燃气燃烧器出口的火焰直径减小;减小外筒体1伸入炉膛内的一端与锥台形筒体6的大径端距离可增大三级风的偏转程度,使得解耦燃气燃烧器出口的火焰直径增大。这是因为经过锥台形筒体6的阻挡的一部分三级风与未被锥形台筒体6阻挡的另一部分三级风混合后流动状态产生综合作用,当外筒体1的长度发生变化后,三级风的偏转程度也会相应的改变。而且,增大或减小外筒体1伸入炉膛内的一端与锥台形筒体6的大径端距离则是通过在外筒体1伸入炉膛内的一端增加与外筒体1的内径和外径均相同的圆筒状结构或裁切外筒体1来实现的。通过设置锥台形筒体6,可延长内部一级风、二级风和燃气的混合和燃烧时间,使一级风、二级风和燃气混合更为均匀,使得还原反应更为充分。此外,使得三级风道30流出的三级风向外侧偏转,可推迟三级风与内侧一级风、二级风和燃气的混合,使得分级燃烧反应由还原性气氛二级风与燃气的混合区逐渐均匀过渡到氧化气氛三级风与燃气和燃气燃烧后的产物的混合区。另外,通过设置锥台形筒体6,使得该解耦燃气燃烧器能够适用于不同的燃气,当燃气含氮量低,热值较高时,可增加三级风向外偏转的程度,可增加还原性燃烧区间,同时解耦燃气燃烧器出口的火焰直径增大,使得散热面积增大,有利于降低燃烧温度,同时减少燃料型和热力型NOx的产生;当燃气含氮量高,热值较低时,可减小三级风向外偏转的程度,解耦燃气燃烧器出口火焰直径减小,以使燃烧火焰保持稳定。而且,能够针对不同的炉膛结构,调节火焰直径,使得该解耦燃气燃烧器能够适应不同结构的炉膛。具体而言,上述燃气通道40伸入炉膛内的一端设置有环形盖板31,环形盖板31的内侧边连接于燃气内筒体4,环形盖板31的外侧边连接于燃气外筒体3,环形盖板31上开设有多个燃气孔311,每个燃气孔311均连接有一燃气喷管,燃气喷管远离环形盖板31的一端位于锥台形筒体6内,燃气经燃气喷管进入到炉膛内,具体而言,在本实施例中,环形盖板31沿其周向开设有十二个燃气孔,当然在其他实施例中,燃气孔311的数量和分布位置可根据实际需要进行设置。燃气内筒体4在伸入炉膛内的一端设置有通道盖板41,环形盖板31与锥台形筒体6的小径端之间的距离小于通道盖板41与锥台形筒体6的小径端之间的距离,因此,在锥台形筒体6的轴线方向上,通道盖板41和燃气内筒体4的内壁面之间形成一端具有开口的圆柱形腔体,将该圆柱形腔体命名为中心稳焰腔420。通道盖板41上开设有连通一级风道10的多个通风口411,一级风由多个通风口411进入到炉膛内,具体而言,在本实施例中,通道盖板41上沿其周向开设有八个通风口411,且八个通风口411等间隔分布。此外,每个通风口411的位置对应设置有一级风导叶42,通过一级风导叶42,能够使得每个通风口411形成旋流风口,进而使得由通风口411喷出的一级风形成旋流。此外,在本实施例中,通道盖板41的外周面上沿其周向开设有多个侧边通风口412,每个侧边通风口412均连接通于一级风道10。而在中心稳焰腔420内与每个侧边通风口412对应的位置均设置有一个一级侧风室410,当然在其他实施例中,一级侧风室410还可以为对应于通道盖板41上靠近燃气内筒体4的内壁的通风口411。上述一级侧风室410包括顶板44和侧板43,顶板44一端连接于燃气内筒体4的内壁,侧板43连接于顶板44和通道盖板41之间,且侧板43一侧连接于燃气内筒体4的内壁,与连接于燃气内筒体4的内壁的一侧相对的另一侧与燃气内筒体4的内壁之间具有间隙,该间隙的大小可根据实际需要进行设置。每个侧板43与燃气内筒体4的内壁面之间的夹角相同,且任意两个相邻的侧板43形成上述间隙的一端之间的距离相同,使得一级侧风口流出的一级风经过上述间隙能够沿燃气内筒体4的周向顺时针或逆时针转动,使得由位于上游的间隙喷出的一级风气流能够对由下游的间隙喷出的一级风气流产生推力,进而使得部分一级风在中心稳焰腔420内形成强制的旋转气流。燃气通道40连通于中心稳焰腔420,具体而言,燃气内筒体4内沿其周向设置有多个燃气支喷管32,且燃气支喷管32位于中心稳焰腔420内,每个燃气直喷管32均连通于燃气通道40,不大于解耦燃气燃烧器的燃气总量15%的燃气经由燃气支管32进入到中心稳焰腔420内,燃气的热值越低,该占比越大,燃气的热值越高,该占比越小。此外,多个燃气直喷管32喷出的燃气气流具有在燃气内筒体4轴向分量和沿燃气内筒体4内壁的切向的分量。当中心稳焰腔420内的燃气气流的流动方向与由上述间隙流出的一级风的旋转方向相同时,由燃气直喷管32喷出的燃气与上述一级风相配合,使得上游的燃气能够对下游燃气产生作用,形成强制旋转燃烧的火焰,保障火焰燃烧的连续性,当中心稳焰腔420内的燃气气流的流动方向与由上述间隙流出的一级风的旋转方向相反时,能够增强燃气和一级风的混合程度。在本实施例中,燃气支喷管32可拆卸连接于燃气内筒体4,且燃气直喷管32为弯管,通过改变弯管的长度、弯度、弯曲半径和燃气支喷管32的安装角度来调整由燃气支管32喷出的燃气气流的流向,当然在其他实施例中,燃气直喷管32还可以为直管,支管上开设有喷气孔。当燃气的热值较大时,燃气支喷管32喷出的燃气气流向炉膛侧偏移,使得燃气气流在燃气内筒体4轴向上且指向炉膛一侧的分量增大,使得火焰与通道盖板41之间的距离增大,使得火焰在中心稳焰腔420内停留的时间缩短,以降低燃烧程度。而当燃气的热值较大时,燃气支喷管32喷出的燃气气流向通道盖板41侧偏移,以增加火焰在中心稳焰腔420内停留的时间,保证火焰的连续性。当然,上述多个燃气支管32的喷出的燃气气流还可以为具有在燃气内筒体4轴向上且指向中心稳焰腔420一侧的分量和沿沿燃气内筒体4内壁的切向的分量,此外,多个燃气支管32的喷出的燃气气流可根据燃气的性质进行相应的调整,在此不再一一进行列举。通过设置中心稳焰腔420,燃气和一级风混合形成的旋转气流可形成上游对下游的稳燃支持,驻留核心火焰解决了高负荷喷口脱火或低负荷燃烧区温度低造成的灭火问题,显著提高低热值燃气的稳燃能力和解耦燃气燃烧器的负荷调节比,以此为基础从而可提高主燃气气流燃气喷管喷出的燃气气流速度燃气压力足够下,实现各负荷下的最佳分级配风。中心稳焰腔420的稳燃能力也为中心燃烧区采用贫燃料燃烧或含燃料氮的中低热值燃气采用非预混局部烟气再循环等提供了基础。此外,可通过第一调节风门对进入到中心稳焰腔420内的总风量进行调整,控制中心稳焰腔420内的氧含量和燃烧强度。另外,上述顶板44上开设有多个旁路通风口441,旁路通风口441为直流风口,或者在旁路通风口441外部同样设置导叶使得由旁路通风口441喷出的一级风发生偏转。每个一级侧风室410内的一级风的20-60%由旁路通风口441进入到炉膛内,以控制与中心稳焰腔420内的燃气直接混合的一级风的风量,比如对于低热值燃气,可增加进入到中心稳焰腔420内的一级风的风量以使火焰稳定,而对于高热值燃气,可减小进入到中心稳焰腔420内的一级风的风量以使燃气进行贫燃料燃烧。由旁路通风441口的流动至炉膛内的一级风的风量可通过改变侧板43与燃气内筒体4的内壁之间的间隙的大小或者旁通通风口441的大小来调整。通过上述通风口411、一级侧风口和旁路通风口441,可调节中心稳焰腔420内着火点和火焰中心位置,增加对燃气种类的适应性;随燃气不同调整中心燃烧区的配风,可在先贫氧到先贫燃料的分级燃烧间转化,比如而对于高热值燃气,可减小进入到中心稳焰腔420内的一级风的风量以使燃气进行贫燃料燃烧;对于低热值燃气,可增加进入到中心稳焰腔420内的一级风风量,以使中心稳焰腔420内的一级风接近理论空气量,以使火焰具有较高的燃烧温度和稳定性。中心稳焰腔420内生成的NOx可在通过后续还原性气氛区域时被还原。一级风侧风室410还可避免燃气内筒体4壁面温度过高,而且形成的旋转气流平均旋转半径大,旋转动量大,有利于带动燃气向外围扩散,增强稳燃和散热能力。如图1和图2所示,上述燃气主喷管包括燃气内喷管33、燃气侧喷管34和燃气外喷管35,在本实施例中,燃气内喷管33和燃气侧喷管34的数量均小于燃气外喷管35的数量,具体而言,燃气内喷管33的数量为三个,燃气侧喷管34的数量为三个,而燃气外喷管35的数量为六个,燃气内喷管33、燃气侧喷管34和燃气外喷管35的数量之和等于燃气孔311的数量。相邻的两个燃气外喷管35之间具有一燃气内喷管33或燃气侧喷管34,而相邻的两个燃气内喷管33之间具有一燃气侧喷34管,且燃气内喷管33、燃气侧喷管34和燃气外喷管35均位于同一个圆周上,但是本实施例对燃气内喷管33、燃气侧喷管34和燃气外喷管35的分布方式不限于此,上述燃气内喷管33、燃气侧喷管34和燃气外喷管35还可沿环形盖板31的径向分层布置,比如,燃气内喷管33到环形盖板31的中心的距离小于等于燃气侧喷管34到环形盖板31的中心的距离,而燃气外喷管35到环形盖板31中心的距离大于燃气侧喷管34到环形盖板31中心的距离。以环形盖板31的所处的水平面为基准,上述燃气内喷管33喷出的燃气气流指向环形盖板31的内侧,且燃气内喷管33喷出的燃气气流与燃气内喷管33所在的位置处环形盖板31的径向之间的夹角为0-90°,保证火焰燃烧为稳定性。以环形盖板31的所处的水平面为基准,燃气外喷管35喷出的燃气气流指向环形盖板31的外侧,燃气外喷管35喷出的燃气气流与燃气外喷管35所在的位置处环形盖板31的径向之间的夹角为-90°-90°,且当燃气外喷管35喷出的燃气气流偏向燃气侧喷管34喷出的燃气气流时角度为正,以减小燃气燃烧后产生的烟气内的氮氧化物的含量。而燃气侧喷管34喷出的燃气气流能够使得燃气内喷管33喷出的燃气气流和燃气外喷管35喷出的燃气气流形成连续的火焰,燃气内喷管33喷出的燃气形成的火焰通过燃气侧喷管34喷出的燃气将燃气外喷管36喷出的燃气点燃,使燃气内喷管33、燃气侧喷管34和燃气外喷管35喷出的燃气能够形成连续稳定燃烧,且在环形盖板31的所处的水平面上,燃气侧喷管34喷出的燃气气流与燃气侧喷管34所在的位置处环形盖板31的径向的切向之间的夹角为-90°-90°,且当燃气侧喷管34喷出的燃气气流方向偏向环形盖板内31侧时角度为正,燃气侧喷管34喷出的燃气气流使得燃气外喷管35喷出的燃气能够被点燃而充分燃烧。当燃气的热值较小时,燃气侧喷管34喷出的燃气气流越偏向于环形盖板31内侧,以提高环形盖板31中心区域的温度,比如对于含有氮的低热值燃气,燃气外喷管35、燃气侧喷管34喷出的燃气气流与燃气内喷管33喷出的燃气气流的之间的夹角均较小,以提高火焰燃烧的连续性、稳定性和均匀性,延长燃气在还原区二级风与燃气混合的区域的停留时间。在本实施例中,上述燃气内喷管33、燃气侧喷管34和燃气外喷管35均可拆卸的连接于环形盖板31,且燃气内喷管33、燃气侧喷管34和燃气外喷管35均为弯管,通过改变弯管的长度、弯度、弯曲半径和安装角度来调整喷出的燃气气流的方向,并且燃气内喷管33、燃气侧喷管34和燃气外喷管35的横截面积、燃气气流的流速相同或者不同,比如针对于热值较低的燃气,燃气内喷管33、燃气侧喷管34和燃气外喷管35的截面均为椭圆形或者矩形,以增加燃气流周界和扩散混合能力,减小气流刚性,提高燃气的燃尽度。此外,针对于高热值燃气,比如天然气,上述燃气内喷管33、燃气侧喷管34和燃气外喷管35可为封闭的管状结构,并且在管状结构的端面和侧面上开设喷孔,管状结构为直管或弯管。通过改变喷孔的位置、分布情况及孔径同样可以来调整燃气气流的方向和流速。比如对于高热值燃气,采用喷孔可提高燃气气流的速度,能够相应增大周边空间空气比和吸热量辐射传热量大,传质限制不会同比增大燃烧量,使燃烧火焰温度峰值降低;提高燃气流速还可增大燃气与空气的速度差,以减小通过截面的空气和燃气的流量比,强化前期贫氧燃烧;提高燃气流速还可增大燃气流刚性,将更多燃烧反应向外围推移,同时提高燃烧后期气流紊流混合能力。另外,相对热力型NOx的链式反应达平衡浓度所需的时间和滞后效应,在二级风旋转时,只有提高燃气径向流速,控制高温火焰和燃气周界氧化气氛的范围,使扩散散热加快效应大于混合燃烧加快效应,才能够减少热力型NOx的生成。通过设置燃气内喷管33、燃气外喷管35和燃气侧喷管34,可形成分层旋流燃烧,一方面可使紧密相接的火焰相互支持,增加气流的均匀交叉混合,强化传热传质,提高均匀和稳定燃烧的能力,减少燃烧脉动引发的振动和噪音;同时扩大燃烧区范围,降低局部燃烧强度和温度。此外,也有利于利用燃料分级的作用降低NOx的排放。而且当燃气内喷管33和燃气侧喷管34喷出的气流均向环形盖板31的内侧偏转时,能够强制形成环形燃烧火焰,可进一步增强稳燃能力和燃烧的均匀性。并且当解耦燃气燃烧器的负荷增加时,燃气的动量增加,使得环形火焰的直径变大,从而使上游燃气对下游燃气的推力逐渐减小,直至逐渐形成平衡,能够增大散热面积,降低燃烧温度。而在解耦燃气燃烧器的负荷减小时,燃气的动量减小,环形火焰的直径变小,从而使上游燃气对下游燃气的推力逐渐增大,直至逐渐形成平衡,能够增加燃烧强度,保证燃烧的稳定性。上述燃气外筒体3上开设有多个连通燃气通道40和二级风道20的燃气侧喷口401,在本实施例中,燃气侧喷口401多包括多个小孔径气孔,当然在其他实施例中,也可在燃气侧喷口401内设置具有多个小气孔的结构。燃气侧喷口401位于二级风道20伸入炉膛内的一端,且相比于第二调节风门21,燃气侧喷口401更靠近于炉膛,解耦燃气燃烧器总燃气量的5%-40%由燃气侧喷口401进入炉膛。通过燃气侧喷口401送入部分燃气与二级风在小空间集中预混,可快速混合均匀,以减小二级风助燃区的局部氧量峰值,并实现在后部还原区对燃气燃烧生成的NOx进行快速还原。在本实施例中,上述第二调节风门21采用旋转叶片式,使得二级风形成旋流,可在减小二级风量的同时,增加二级风的旋转动量分量,保证二级风与燃气的快速混合,比如对于高热值燃气,可使二级风的旋流方向与燃气气流同向旋转,以延长二者的混合时间,降低集中燃烧的温度峰值,对于低热值燃气,可使二级风的旋流方向与燃气气流相逆向旋转,加强二者的混合,有利于提高先氧化后还原的分级效果。但是本实施例对第二调节风门21的结构不限于此,第二调节风门21还可采用其他结构,比如利用相互套设的内套筒和外套筒,内套筒和外套筒上均开设有风孔,通过调节内套筒和外套筒上的风孔的相对位置来调节二级风量的大小。此外,在本实施例中,在二级风道20伸入炉膛内的一端设置二级风导叶22,以增加二级风的旋流强度,还可通过二级风导叶22的导向结构和间隙,改变二级风的风量分布。当然在其他实施例中,也可在二级风道20伸入炉膛内的一端设置盖板,盖板上开设有多个贯通孔,通过调整贯通孔的数量、分布位置或分布方式来改变二级风的风量分布。通过第二调节风门21调节二级风的风量,不仅可调整燃烧中期反应过程的气氛,比如控制在锥台形筒体6内的燃烧中期为最佳还原性反应气氛,使得燃气燃烧产生的NOx被快速还原,也可改变风的刚度、旋流强度,控制燃烧中期燃气较集中时与空气的混合速度,提高燃烧均匀度,降低局部温度峰值。通过改变二级风道20内二级风导叶22的导向结构,提高二级风道20的通风强度,有利于含有燃料氮的低热值燃气在扩散过程完成先氧化后还原的反应,即可增强初期燃烧强度和稳燃能力,也可减小NOx的生成。如图2所示,锥台形筒体6的锥壁上沿其周向开设有多个通风孔61,能够连通锥台形筒体6和三级风道30,在本实施例中,通风孔61为细长形,且由锥台形筒体6的小径端向大径端延伸,通风孔61沿锥台形筒体6的周向延伸的边均为短边,而通风孔61的两个长边与锥壁的延伸方向之间的夹角均为0-60°,三级风道30内的三级风通过通风孔61进入炉膛。具体而言,通风孔61在锥台形筒体6的大径端间隔设置,通风孔61两条长边向外筒体1侧的倾斜角度不同,使锥台形筒体6的壁面对通过通风孔61的三级风产生旋转导流作用。通过通风孔61,能够对三级风道30内的三级风和由锥台形筒体6流出的混合气体产生导流作用,增加三级风的扩散范围,可使得三级风与燃气和燃气燃烧产生的可燃物连续混合,逐渐增加对燃气和可燃物的供氧量,在均匀、稳定地控制燃烧中期的还原性气氛下,降低后期富氧条件下燃烧的集中度和NOx的反弹量,增强对低热值燃气的燃烧能力。当然在其他实施例中,对于低热值燃气,通风孔61的形状还可以为矩形或圆形。此外,三级风利用锥台形筒体6的导向作用增大向外偏转的程度,可延长三级风与内侧燃气燃烧产生的还原性气体的混合时间,使燃烧反应逐渐均匀过渡到氧化性气氛。三级风采用刚性较强的向外扩散气流,可扩大火焰直径和分级燃烧空间,优化温度分布,增加高温烟气的对外散热能力。而且燃气与可燃物和三级风采用旋直流结合的混合方式,有利于可燃物的充分燃尽。如图2所示,上述三级风道30在伸入炉膛内的一端设置有三级风导叶11,对于低热值燃气,三级风导叶11和锥台形筒体6相配合,使得三级风的旋转方向与二级风的旋转方向相反,以增强燃气和可燃物与氧气的后期扩散混合,提高燃气和可燃物的燃尽度。此外,该解耦燃气燃烧器内还具有再循环烟气通道,再循环烟气通道连通于一级风道10和或二级风道20。当再循环烟气通道连通于一级风道10时,2%-10%的再循环烟气经再循环烟气通道和一级风道10进入炉膛,此时再循环烟气通道连接于第一调节风门和一级风道10靠近炉膛的一端之间。当再循环烟气通道连通于二级风道20时,5%-20%的再循环烟气经再循环烟气通道和二级风道20进入炉膛,此时再循环烟气通道连接于第二调节风门21和二级风道20靠近炉膛的一端之间。当再循环烟气通道均连通于一级风道10和二级风道20时,2%-5%的再循环烟气经再循环烟气通道和一级风道10进入炉膛,5%-15%的再循环烟气经再循环烟气通道和一级风道10进入炉膛。一、二级风仅占总风量的一部分,通入少量再循环烟气即可以有效降低燃气燃烧中前期的含氧量和燃烧火焰温度。如图1和图2所示,该解耦燃气燃烧器还包括中心管5,中心管5穿设于燃气内筒体4内,且中心管5穿过通道盖板41连通于炉膛,中心管5的外壁和燃气内筒体4之间形成上述一级风道10。中心管5与燃气内筒体4同轴设置或者中心管5的轴线与燃气内筒体4的轴线平行间隔设置。对于高热值或高氢气组分的燃气,中心管5可作为再循环烟气通道。中心管5的出口设置旋流叶片,以增强再循环烟气和一级风的混合,降低燃气燃烧中前期的含氧量和燃烧强度,当然上述中心管5还可作为点火、火检或看火通道。对于高热值或高H2组分的燃气,在燃烧中前期燃气和空气浓度较高且不易散热的中心区域本实施例中的中心稳焰腔420引入再循环烟气控制反应气氛和温度,随着燃烧过程消耗氧气,还原性气氛范围扩大,向外散热能力增强,因而,与传统再循环烟气方式相比,本发明可采用较小的烟气再循环流量也可与一级风预混;回收少量再循环烟气的余热较易热平衡,可降低再循环烟气的温度和流量,烟气再循环的能耗更小。综上,本实施例提供的解耦燃气燃烧器,通过设置有中心稳焰腔420,半封闭的旋转气流可形成上游对下游的稳燃支持,驻留核心火焰解决了高负荷喷口脱火或低负荷燃烧区温度低造成的灭火问题,显著提高低热值燃气的稳燃能力和解耦燃气燃烧器的负荷调节比,以此为基础从而可提高燃气射流速度燃气压力足够下,实现各负荷下的最佳分级配风。中心稳焰腔420的稳燃能力也为中心燃烧区采用贫燃料燃烧或含燃料氮的中低热值燃气采用非预混局部烟气再循环等提供了基础。通过喷孔提高主燃气流速,可相应增大周边空间空气比和吸热量辐射传热量大,传质限制不会同比增大燃烧量,使燃烧火焰温度峰值降低;提高燃气流速可增大燃气与空气的速度差,以减小通过截面的空气和燃气的流量比,强化前期贫氧燃烧;提高燃气流速可增大燃气流刚性,将更多燃烧反应向外围推移,同时提高燃烧后期气流紊流混合能力。另外,相对热力型NOx的链式反应达平衡浓度所需的时间和滞后效应,在助燃空气旋转时,只有提高燃气径向流速,控制高温火焰和燃气周界氧化气氛的范围,使扩散散热加快效应大于混合燃烧加快效应,才能够减少热力型NOx的生成。通过上述通风口411、一级侧风口和旁路通风口441,可调节中心稳焰腔420内着火点和火焰中心位置,增加对燃气种类的适应性;随燃气不同调整中心燃烧区的配风,可在先贫氧到先贫燃料的分级燃烧间转化,比如而对于高热值燃气,可减小进入到中心稳焰腔420内的一级风的风量以使燃气进行贫燃料燃烧;对于低热值燃气,可增加进入到中心稳焰腔420内的一级风风量,以使中心稳焰腔420内的一级风接近理论空气量,以使火焰具有较高的燃烧温度和稳定性。中心稳焰腔420内生成的NOx可在通过后续还原性气氛区域时被还原。一级风侧风室410还可避免燃气内筒体4壁面温度过高,而且形成的旋转气流平均旋转半径大,旋转动量大,有利于带动燃气向外围扩散,增强稳燃和散热能力。通过设置燃气内喷管33、燃气外喷管35和燃气侧喷管34,可形成分层旋流燃烧,一方面可使紧密相接的火焰相互支持,增加气流的均匀交叉混合,强化传热传质,提高均匀和稳定燃烧的能力,减少燃烧脉动引发的振动和噪音;同时扩大燃烧区范围,降低局部燃烧强度和温度。此外,也有利于利用燃料分级的作用降低NOx的排放。而且当燃气内喷管33和燃气侧喷管34喷出的气流均向环形盖板31的内侧偏转时,能够强制形成环形燃烧火焰,可进一步增强稳燃能力和燃烧的均匀性。并且当解耦燃气燃烧器的负荷增加时,燃气的动量增加,使得环形火焰的直径变大,从而使上游燃气对下游燃气的推力逐渐减小,直至逐渐形成平衡,能够增大散热面积,降低燃烧温度。而在解耦燃气燃烧器的负荷减小时,燃气的动量减小,环形火焰的直径变小,从而使上游燃气对下游燃气的推力逐渐增大,直至逐渐形成平衡,能够增加燃烧强度,保证燃烧的稳定性。通过第二调节风门21调节二级风的风量,不仅可调整燃烧中期反应过程的气氛,比如控制在锥台形筒体41内的燃烧中期为最佳还原性反应气氛,使得燃气燃烧产生的NOx被快速还原,也可改变风的刚度、旋流强度,控制燃烧中期燃气较集中时与空气的混合速度,提高燃烧均匀度,降低局部温度峰值。通过改变二级风道20内二级风导叶22的导向结构,提高二级风道20靠近燃气外筒体3处的通风强度,有利于含有燃料氮的低热值燃气在扩散过程完成先氧化后还原的反应,即可增强初期燃烧强度和稳燃能力,也可减小NOx的生成。通过燃气侧喷口401送入部分燃气与二级风在小空间集中预混,可快速混合均匀,以减小二级风助燃区的局部氧量峰值,并实现在后部还原区对燃气燃烧生成的NOx进行快速还原。不同于传统浓淡燃烧,该部分燃料是进入还原区燃烧,过氧燃烧阶段是在与三级风混合后;也不同于传统炉膛燃料分级燃烧,传统燃料分级采用二次燃料与过量空气大于1的烟气混合燃烧,虽然烟气中NOx和氧等组分分布相对较均匀,但燃料分布极不均匀,相对炉膛空间,再燃燃料体积流量很小,扩散要求高,因而对还原区空间要求较大,还原和燃尽的耦合较强。通过锥台形筒体6分流的作用,扩大了燃气与二级风连续混合的区间,结合配风调节,使燃气在进入过氧燃尽区间前已充分均匀分布,并完成大部分燃料氮的转化。锥台形筒体6的风口设置形式,以及适宜的气流刚度,使内侧混合气向外侧扩散时,具有较小的径向动量消耗和扩散阻力,扩大了高温区域外径和散热能力;燃烧中期空气燃气扩散交界面的大幅提高,有利于适量空气与混合气进行深度交叉扩散混合,快速、渐进、均匀增加供氧量到最佳值,在有限的空间保障分级燃烧的效果。外围三级风利用锥台形筒体6的导向作用增大向外偏转,可延长三级风与内侧还原性气体的混合时间,使燃烧反应逐渐均匀过渡到氧化性气氛。外围三级风采用刚性较强的向外扩散气流,可扩大火焰直径和分级燃烧空间,优化温度分布,增加高温烟气的对外散热能力。燃气与空气采用旋流和直流结合的混合方式,有利于可燃物的充分燃尽。对于高热值或高H2组分的燃气,在燃烧中前期燃气和空气浓度较高且不易散热的中心区域本实施例中的中心稳焰腔引入再循环烟气控制反应气氛和温度,随着燃烧过程消耗氧气,还原性气氛范围扩大,向外散热能力增强,因而,与传统再循环烟气方式相比,本发明可采用较小的烟气再循环流量也可与一级风预混;回收少量再循环烟气的余热较易热平衡,可降低再循环烟气的温度和流量,烟气再循环的能耗更小。本实施例提供的解耦燃气燃烧器改进了传统以燃气向助燃空气扩散为核心的扩散燃烧方式。在中心稳焰腔420内的燃烧前期,以截面较小的燃气向空域较大的空气扩散为主,有利于稳定燃烧;在锥台形筒体6内的燃烧中期,以截面较小的薄层空气向空域较大、燃气浓度降低的均匀混合气扩散为主,限制了氧量和温度峰值,有利于控制燃料型和热力型NOx;在锥台形筒体6的大径端外侧的燃烧后期,浓度差减小的风烟在单位空间内交界面较大的区域完成相互扩散,有利于混合均匀和燃尽。改进扩散反应机制,及时向动力燃烧区过渡,是在较小的空间内提高分级燃烧效能的关键。并且本实施例提供的解耦燃气燃烧器,通过上述结构,可实现解耦燃气燃烧器的稳定燃烧、低氮排放和高效率的解耦,增加该解耦燃气燃烧器对燃气种类和炉膛结构的适应性,减小燃烧器的设计、实验和维护成本,便于现场调节和修正,以达到最佳的实际运行效果。实施例二图2为本实施例提供的燃烧器的剖视图。如图2所示,本实施例提供的解耦燃气燃烧器的结构与实施例一提供的解耦燃气燃烧器的结构基本相同,不同之处在于:外筒体1伸入炉膛内的一端的外壁面上设置有能够沿外筒体1的轴向滑动的延伸部12,延伸部12为筒状结构,且延伸部12的内径略大于外筒体1的外径通过调整延伸部12相对锥台形筒体6的相对位置来使得三级风的偏转程度发生改变,而使得该解耦燃气燃烧器适应不用类型的燃气,省去了更换不同结构的锥台形筒体6的操作过程,减少了组装时间,而且能够在解耦燃气燃烧器工作过程中进行调整,更加方便快捷。具体而言,上述过程为当延伸部12靠近炉膛内的一端位于锥台形筒体6的大径端和小径端之间,通过继续使延伸部12向靠近锥台形筒体6的大径端的方向移动,可减小三级风向外的偏转程度;而将延伸部12相远离锥台形筒体6的大径端方向移动,可增大三级风向外的偏转程度。当延伸部12靠近炉膛内的一端比锥形台筒体6更伸入炉膛内时,使延伸部12向远离锥台形筒体6的大径端的方向移动,可减小三级风向外的偏转程度;使延伸部12向靠近锥台形筒体6的大径端的方向移动,可增大三级风向外的偏转程度。以上实施方式只是阐述了本发明的基本原理和特性,本发明不受上述实施方式限制,在不脱离本发明精神和范围的前提下,本发明还有各种变化和改变,这些变化和改变都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

权利要求:1.一种解耦燃气燃烧器,其特征在于,包括由外至内依次设置且同轴的外筒体1、分隔筒体2、燃气外筒体3和燃气内筒体4,所述燃气内筒体4内形成一级风道10,所述燃气内筒体4和所述燃气外筒体3之间形成燃气通道40,所述燃气外筒体3和所述分隔筒体2之间形成二级风道20,所述分隔筒体2和所述外筒体1之间形成三级风道30,所述解耦燃气燃烧器还包括锥台形筒体6,所述锥台形筒体6的小径端连接于所述分隔筒体2伸入炉膛内的一端,所述锥台形筒体6的大径端的外径小于所述外筒体1的内径,在所述锥台形筒体6的轴线方向上,所述外筒体1伸入所述炉膛内的一端与所述锥台形筒体6的大径端之间的距离可调。2.根据权利要求1所述的解耦燃气燃烧器,其特征在于,所述锥台形筒体6的锥壁上沿其周向开设有多个通风孔61,所述通风孔61为细长形,且其沿所述锥台形筒体6的锥壁周向延伸的边为短边,所述通风孔61的长边与所述锥台形筒体6的锥壁的延伸方向之间的夹角为0-60°,所述三级风道30内的三级风可通过所述通风孔61进入所述炉膛。3.根据权利要求1所述的解耦燃气燃烧器,其特征在于,所述燃气内筒体4内在伸入所述炉膛的一端设置有通道盖板41,所述通道盖板41和所述燃气内筒体4的内壁之间形成一端具有开口的中心稳焰腔420,所述燃气通道40连通于所述中心稳焰腔420。4.根据权利要求3所述的解耦燃气燃烧器,其特征在于,所述通道盖板41的外周面上沿其周向开设有多个侧边通风口412,所述侧边通风口412连通于所述一级风道10,与每个所述侧边通风口412正对的位置均设置有一级侧风室410,所述一级侧风室410包括侧板43和顶板44,所述顶板44一端连接于所述燃气内筒体4的内壁,所述侧板43连接于所述顶板44和所述通道盖板41之间,且所述侧板43一侧连接于所述燃气内筒体4的内壁,另一侧与所述燃气内筒体4的内壁之间具有间隙,以使由所述间隙流出的一级风沿所述燃气内筒体4的内壁顺时针或逆时针旋转流动。5.根据权利要求4所述的解耦燃气燃烧器,其特征在于,所述燃气内筒体4内沿其周向设置有多个燃气支喷管32,所述燃气支喷管32位于所述中心稳焰腔420内,所述燃气支喷管32可拆卸连接于所述燃气内筒体4的内壁,且连通于所述燃气通道40,每个所述燃气支喷管32喷出的燃气气流具有在所述燃气内筒体4轴向上的分量和沿所述燃气内筒体4内壁的切向的分量。6.根据权利要求1所述的解耦燃气燃烧器,其特征在于,所述燃气通道40靠近所述炉膛的一端之间设置有环形盖板31,所述环形盖板31上开设有多个燃气孔311,每个所述燃气孔311均可拆卸连接有一燃气喷管。7.根据权利要求6所述的解耦燃气燃烧器,其特征在于,所述燃气喷管包括燃气内喷管33、燃气侧喷管34和燃气外喷管35,所述燃气内喷管33喷出的燃气气流指向所述环形盖板31的内侧,所述燃气外喷管35喷出的燃气气流指向所述环形盖板31的外侧,所述燃气侧喷管34喷出的燃气气流能够使得所述燃气内喷管33和所述燃气外喷管35喷出的燃气气流形成连续的火焰。8.根据权利要求6所述的解耦燃气燃烧器,其特征在于,每个所述燃气喷管上均为封闭的管状结构,所述管状结构上开设有喷孔。9.根据权利要求1所述的解耦燃气燃烧器,其特征在于,所述燃气外筒体3上开设有多个连通所述燃气通道40和所述二级风道20的燃气侧喷口401,且所述燃气侧喷口401位于所述二级风道20伸入所述炉膛内的一端,以使部分燃气与二级风混合。10.根据权利要求1所述的解耦燃气燃烧器,其特征在于,所述解耦燃气燃烧器还包括再循环烟气通道,所述再循环烟气通道连通于所述一级风道10和或所述二级风道20。

百度查询: 中国科学院过程工程研究所 一种解耦燃气燃烧器

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。