买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】铁氧体磁铁_TDK株式会社_201780031110.6 

申请/专利权人:TDK株式会社

申请日:2017-05-19

公开(公告)日:2020-09-15

公开(公告)号:CN109155175B

主分类号:H01F1/11(20060101)

分类号:H01F1/11(20060101);C01G49/00(20060101);C04B35/26(20060101)

优先权:["20160520 JP 2016-101518","20160520 JP 2016-101520"]

专利状态码:有效-授权

法律状态:2020.09.15#授权;2019.01.29#实质审查的生效;2019.01.04#公开

摘要:本发明的铁氧体磁铁特征在于,具有磁铅石结构,将A、R、Fe及Me各自的金属元素的总量的构成比率以A1‑xRxFe12‑yMeyz的式1表示时,铁氧体磁铁中的Fe2+含量超过0.1质量%且低于5.4质量%,其中,式1中,A是选自Sr、Ba、Ca及Pb中的至少一种元素,R是选自稀土元素包含Y及Bi中的至少一种元素且至少包含La,Me是Co、或者Co及Zn。根据本发明,可得到提高了Br的铁氧体磁铁。

主权项:1.一种铁氧体磁铁,其特征在于,所述铁氧体磁铁具有磁铅石结构,将A、R、Fe及Me各自的金属元素的总计的构成比率以A1-xRxFe12-yMeyz的式1表示时,其中,式1中,A是选自Sr、Ba、Ca及Pb中的至少一种元素,R是选自包含Y的稀土元素及Bi中的至少一种元素且至少包含La,Me是Co、或者Co及Zn,式1中,x、y、及z满足下述式2、3、4及5,0.60≤x≤0.84……20.30≤y≤0.60……30.80≤z<1.10……41.60<xyz<4.00……5所述铁氧体磁铁中的Fe2+含量超过0.1质量%且低于5.4质量%。

全文数据:铁氧体磁铁技术领域本发明涉及铁氧体磁铁,特别是涉及铁氧体磁铁的剩余磁通密度Br的提高。背景技术作为由氧化物构成的永久磁铁的材料,已知有六方晶系的M型磁铅石型Sr铁氧体或Ba铁氧体。由这些铁氧体构成的铁氧体磁铁以烧结磁铁或粘结磁铁的形式作为永久磁铁进行供给。近年来,随着电子部件的小型化、高性能化,相对于由铁氧体磁铁构成的永久磁铁,也要求小型且具有较高的磁特性。作为永久磁铁的磁特性的指标,通常使用剩余磁通密度Br及矫顽力HcJ,将这些指标较高的永久磁铁评价为具有较高的磁特性。一直以来,从提高永久磁铁的Br及HcJ的观点出发,进行着铁氧体磁铁中包含预定的元素等组成的变更的研究。例如,专利第4591684号专利文献1中提出有一种M型La铁氧体烧结磁铁,其具有现有的M型Sr铁氧体或M型Ba铁氧体烧结磁铁所不能达成的高剩余磁通密度和高矫顽力。该铁氧体烧结磁铁至少包含La及Co,因此,称为La-Co铁氧体烧结磁铁。另外,特开2005-45167号专利文献2中提出了La-Co铁氧体磁铁包含二价铁离子以下记载为Fe2+的专利。现有技术文献专利文献专利文献1:日本专利第4591684号公报专利文献2:日本特开2005-45167号公报发明内容发明所要解决的技术问题如上所述,永久磁铁优选Br和HcJ较高,但还不容易良好地得到它们,需要简单且良好地得到这些特性的铁氧体磁铁。另一方面,近年来,作为可变磁力磁铁,特别需要Br较高的铁氧体磁铁。记载了专利文献1的La-Co铁氧体具有较高的磁特性。但是,专利文献1的La-Co铁氧体的Br未超过4.7kG。进一步,专利文献2中记载了,当比较仅Fe2+量不同的相同组成的样品时,如果Fe2+量超过0.12质量%,则iHc矫顽力变高,但Br必然降低。本发明是鉴于这种情况而完成的,其目的在于,得到一种铁氧体磁铁,其Br比现有的La-Co铁氧体烧结磁铁的磁特性显著地提高。用于解决技术问题的方案为了达成上述目的,本发明提供一种铁氧体磁铁,其特征在于,该铁氧体磁铁具有磁铅石结构,将A、R、Fe及Me各自的金属元素的总量的构成比率以A1-xRxFe12-yMeyz的式1表示时,式1中,A是选自Sr、Ba、Ca及Pb的至少一种元素,R是选自稀土元素包含Y及Bi的至少一种元素且至少包含La,Me是Co、或者Co及Zn。式1中,x、y及z满足下述式2、3、4及5,0.60≤x≤0.8420.30≤y≤0.6030.80≤z<1.1041.60<xyz<4.005铁氧体磁铁中的Fe2+含量超过0.1质量%且低于5.4质量%。本发明的铁氧体磁铁中,Fe2+的含量超过0.1质量%且低于5.4质量%,由此,能够得到特别高的Br和良好的HcJ。因此,本发明的铁氧体磁铁具有作为永久磁铁充分的Br及HcJ。从更良好地得到上述效果的观点出发,本发明的铁氧体磁铁中,优选的Fe2+的含量为0.5~5.0质量%,更优选的Fe2+的含量为0.5~4.4质量%,进一步优选Fe2+的含量为1.4~4.4质量%。具有由本发明限定的组成范围的铁氧体磁铁中,通过在上述范围内包含Fe2+,从而Br显著地提高。认为这是由于,磁铅石型铁氧体以下记载为M型铁氧体的替代存在于磁矩朝下的位点的Fe3+而存在Fe2+。因此,认为通过M型铁氧体整体的向上的磁矩的总数变多,铁氧体磁铁的Br变高。另外,优选本发明的铁氧体磁铁包含Si,Si的含量以SiO2换算计超过0.002质量%且低于0.15质量%。现有的铁氧体烧结磁铁通过包含以Si为晶界成分的烧结助剂,得到较高的Br和较高的HcJ。但是,为了得到这些效果,而较多地包含Si,具体而言,将以SiO2换算计的Si的含量设定成0.3~1.3质量%程度。但是,本发明中,如上所述,通过将Si的含量控制成本领域技术人员的常识外的微量,从而能够得到特别是Br显著地提高的惊人的效果。从更良好地得到上述效果的观点来看,更优选的Si的含量以SiO2换算计为0.03~0.11质量%。进一步优选的Si的含量以SiO2换算计为0.03~0.09质量%。发明效果根据本发明,可提供Br比现有的La-Co铁氧体烧结磁铁的磁特性显著地提高的铁氧体磁铁。附图说明图1是表示铁氧体烧结磁铁的Fe2+含量与Br的关系的图;实验例1图2是表示铁氧体烧结磁铁的Fe2+含量与HcJ的关系的图;实验例1图3是表示铁氧体烧结磁铁的SiO2的含量与Br的关系的图;实验例5图4是表示铁氧体烧结磁铁的SiO2的含量与HcJ的关系的图。实验例5具体实施方式本实施方式的铁氧体磁铁是具有磁铅石结构的铁氧体磁铁,其中,将A、R、Fe及Me各自的金属元素的总量的构成比率以下述的组成式1表示时,A1-xRxFe12-yMeyz……1组成式1中,A是选自Sr、Ba、Ca及Pb中的至少一种元素,R是选自稀土元素包含Y及Bi中的至少一种元素且至少包含La,Me为Co、或Co及Zn。组成式1中,x、y、及z满足下述式2、3、4及5,0.60≤x≤0.84……20.30≤y≤0.60……30.80≤z<1.10……41.60<xyz<4.00……5铁氧体磁铁中的Fe2+含量超过0.1质量%且低于5.4质量%。此外,本实施方式中,将铁氧体磁铁整体的组成换算成上述的组成式1进行表示。因此,在本实施方式的铁氧体磁铁包含具有磁铅石结构的相以外的相例如,赤铁矿,尖晶石,正铁氧体等的情况下,将构成这些相的元素的比率换算成组成式1。换言之,将铁氧体磁铁整体所包含的各元素量应用于组成式1,算出x、y及z。以下,更详细地说明上述的铁氧体磁铁。A:A是选自Sr、Ba、Ca及Pb中的至少一种元素。作为A,从矫顽力HcJ提高的观点来看,最优选至少使用Sr。Rx:上述组成式1的x表示R置换A的比例。上述组成式1中,当x低于0.60时,即R的量过少时,铁氧体磁铁中的R的固溶量不充分,Br及HcJ降低。但是,当x超过0.84时,Br及HcJ降低。因此,本发明将x的范围设为0.60≤x≤0.84。优选的x的值为0.71≤x≤0.84,更优选的x的值为0.76≤x≤0.84,进一步优选的x的值为0.76≤x≤0.81。R是选自包含Y的稀土元素及Bi中的至少一种元素,但作为R,从提高剩余磁通密度Br的观点来看,优选使用La。因此,本发明中将La作为必需元素。Mey:上述组成式1的y表示Me置换Fe的比例,即Co量或Co+Zn量。y也与x一样,本发明中从得到较高的剩余磁通密度Br的观点进行设定。若y低于0.30,则铁氧体磁铁的Me的固溶量不充分,Br及HcJ降低。另一方面,当y超过0.60时,六方晶M型铁氧体中存在未能置换固溶的过量的元素Me。因此,本发明将y的范围设为0.30≤y≤0.60。优选的y的值为0.30≤y≤0.55,更优选的y的值为0.30≤y≤0.51,进一步优选的y的值为0.34≤y≤0.51。z:上述组成式1中的z表示Fe及Me的合计相对于A及R的合计之比。当z过小时,包含A及R的非磁性相增加,因此,饱和磁化变低。另一方面,当z过大时,α-Fe2O3相或包含Me的尖晶石铁氧体相增加,因此,饱和磁化变低。因此,本发明将z的范围设为0.80≤z<1.10。优选的z的值为0.80≤z≤1.04,更优选的z的值为0.84≤z≤1.04,进一步优选的z的值为0.84≤z≤1.00。xyz:上述组成式1的xyz表示R的置换量与Me的置换量的比率。本实施方式中,xyz设为1.60<xyz<4.00。通过x、y及z满足该关系,可得到良好的Br和HcJ。在该比率过高的情况和过低的情况下,Br及HcJ相反处于降低的倾向。优选的xyz的值为1.62≤xyz≤2.97,更优选的xyz的值为1.75≤xyz≤2.97,进一步优选的xyz的值为1.75≤xyz≤2.62。Fe2+量:本实施方式的铁氧体磁铁具有由M型铁氧体相具有磁铅石结构的铁氧体相构成的主相。且Fe2+的含量超过0.1质量%且低于5.4质量%。通过Fe2+的含量满足这种条件,可得到较高的Br和良好的HcJ。但是,当Fe2+的含量过多时,有时会发现Br及HcJ的降低,因此,优选Fe2+的含量的上限根据期望的Br及HcJ进行决定。优选的Fe2+的含量为0.5~5.0质量%,更优选的Fe2+的含量为0.5~4.4质量%,进一步优选的Fe2+的含量为1.4~4.4质量%。铁氧体磁铁中的Fe2+的含量例如可通过氧化还原滴定或菲咯啉吸光光度法进行测定。本实施方式的铁氧体磁铁所包含的Fe2+不限定于包含于上述的主相的情况,也可以包含于副相、晶界、晶界相等。优选本实施方式的铁氧体磁铁进一步包含Si。具体而言,优选Si的含量以SiO2换算计超过0.002质量%且低于0.15质量%。通过Si的含量满足这种条件,可得到具有较高的Br和HcJ的铁氧体磁铁。但是,以SiO2换算计为0.002质量%以下时,得不到充分的效果,烧结不足,因此,Br及HcJ降低。另外,当Si的含量过多时,有时会发现Br及HcJ的降低,因此,优选Si的含量根据期望的Br及HcJ进行决定。从得到适当的Br和HcJ的观点来看,更优选的Si的含量以SiO2换算计为0.03~0.11质量%。进一步优选的Si的含量以SiO2换算计为0.03~0.09质量%。优选本实施方式的构成铁氧体磁铁的M型铁氧体相在本实施方式的铁氧体磁铁中作为主相包含60.0摩尔%以上,更优选为70摩尔%以上。本实施方式的铁氧体磁铁中的M型铁氧体相的存在能够通过以下的条件的X射线衍射或电子束衍射等进行确认。M型铁氧体相占据铁氧体磁铁的组织中的摩尔比通过如下算出,将M型铁氧体、正铁氧体、赤铁矿、尖晶石各自的粉末试样以预定比率进行混合,并比较计算对该混合物得到的X射线衍射强度和对实际制造的铁氧体磁铁得到的X射线衍射强度。X射线产生装置连续额定:3kW管电压:45kV管电流:40mA采样宽度:0.02deg扫描速度:4.00degmin发散狭缝:1.00deg散射狭缝:1.00deg受光狭缝:0.30mm本实施方式的组成式1表示A、R、Fe及Me各自的金属元素的总量的构成比率,但在也包含氧O的情况下,可以以A1-xRxFe12-yMeyzO19表示。在此,氧O的原子个数成为19,但这表示Me全部为二价,Fe及R全部为三价,且x=y,z=1时的氧的化学计量组成比。但是,x、y、z、Fe2+量在上述的范围内进行变化,可取得各种值,因此,根据x、y、z、Fe2+量的值不同,氧的原子数不同。另外,例如在烧结气氛为还原性气氛的情况下,可能产生氧的缺损空位。另外,Co及或Me的价数可能变化,进而R中也可取得三价以外的价数,根据这些,氧相对于金属元素的比率会变化。根据以上,实际的氧的原子数有时呈现偏离19的值,本申请发明也包含这种情况。本实施方式的铁氧体磁铁除了Si以外,还能够包含Ca作为副成分。Si及Ca以M型铁氧体的烧结性的改善、磁特性的控制及烧结体的晶粒的调整等为目的进行添加。本实施方式的铁氧体磁铁也可以包含Si及Ca以外的成分作为副成分。作为其它的副成分,例如也可以具有Al及或Cr。通过包含这些元素,处于永久磁铁的HcJ提高的倾向。从得到良好的HcJ的提高效果的观点来看,优选Al及或Cr的含量相对于铁氧体磁铁整体以Al2O3及Cr2O3换算计,合计为0.1质量%以上。但是,这些成分有时会使永久磁铁的Br降低,因此,从得到良好的Br的观点来看,合计优选设为3质量%以下。另外,作为副成分,也可以作为例如B2O3包含B。通过包含B,能够降低得到由铁氧体磁铁构成的烧结体时的煅烧温度及烧结温度,并生产力良好地得到永久磁铁。但是,当B过多时,有时永久磁铁的饱和磁化降低,因此,优选相对于铁氧体磁铁整体,B的含量以B2O3换算计为0.5质量%以下。另外,本实施方式的铁氧体磁铁也可以以氧化物的形式包含作为副成分的Ga、Mg、Cu、Mn、Ni、In、Li、Ti、Zr、Ge、Sn、V、Nb、Ta、Sb、As、W、Mo等。它们的含量换算成各原子的化学计量组成的氧化物,优选为氧化镓5质量%以下、氧化镁5质量%以下、氧化铜5质量%以下、氧化锰5质量%以下、氧化镍5质量%以下、氧化铟3质量%以下、氧化锂1质量%以下、氧化钛3质量%以下、氧化锆3质量%以下、氧化锗3质量%以下、氧化锡3质量%以下、氧化钒3质量%以下、氧化铌3质量%以下、氧化钽3质量%以下、氧化锑3质量%以下、氧化砷3质量%以下、氧化钨3质量%以下、氧化钼3质量%以下。但是,在使它们组合多种进行包含的情况下,为了避免磁特性的降低,优选其合计成为5质量%以下。此外,优选本实施方式的铁氧体磁铁中作为副成分不包含碱金属元素Na,K,Rb等。碱金属元素处于容易降低永久磁铁的饱和磁化的倾向。但是,碱金属元素也有时包含于例如用于得到铁氧体磁铁的原料中,如果是这样不可避免地包含的程度,则也可以包含于铁氧体磁铁中。不会大幅影响磁特性的碱金属元素的含量以合计为3质量%以下。铁氧体磁铁的组成能够通过荧光X射线定量分析进行分析。本实施方式的铁氧体磁铁如果具有上述的组成,则其形态没有特别限制,例如可以示例:铁氧体烧结磁铁、铁氧体磁铁粉末、铁氧体磁铁粉末分散于树脂中的粘结磁铁及包含于磁记录介质的膜状的磁性层等。例如,铁氧体烧结磁铁、及粘结磁铁可加工成预定的形状,并用于以下所示的广泛的用途。例如,能够用作:燃油泵用、电动车窗用、ABS防抱死制动·系统用、风扇用、刮水器用、动力转向装置用、主动制导悬挂系统用、启动器用、门锁用、电动反光镜用等的汽车用马达。另外,能够用作:FDD主轴用、VTR主动轴用、VTR旋转头用、VTR卷盘用、VTR加载用、VTR摄像机主动轴用、VTR摄像机旋转头用、VTR摄像机变焦距用、VTR摄像机聚焦用、收录机等主动轴用、CDDVDMD主轴用、CDLDMD加载用、CDLD光拾取用等的OAAV设备用马达。还能够用作:空调压缩机用、冷冻库压缩机用、电动工具驱动用、电吹风风扇用、电动剃须刀驱动用、电动牙刷用等的家用电器用马达。另外,还可用作:机器人轴、关节驱动用、机器人主驱动用、工作机器工作台驱动用、工作机器皮带驱动用等的FA设备用马达。作为其它的用途,适合用于:摩托车用发电器、扬声器·耳机用磁铁、磁控管、MRI用磁场产生装置、CD-ROM用夹持器、分配器用传感器、ABS用传感器、燃料·燃油液位传感器、磁锁、隔离器等。另外,在本实施方式的铁氧体磁铁形成粉末的形态的情况下,优选将其平均粒径设为0.1~5.0μm。粘结磁铁用粉末的更优选的平均粒径为0.1~2.0μm,进一步优选的平均粒径为0.1~1.0μm。在制造粘结磁铁时,将铁氧体磁铁粉末与树脂、金属、橡胶等的各种粘合剂进行混炼,在磁场中或无磁场中进行成型。作为粘合剂,优选为NBR丙烯腈丁二烯橡胶、氯化聚乙烯、聚酰胺树脂等。成型后,进行固化,并设为粘结磁铁。铁氧体烧结磁铁的制造方法接下来,对上述那样的铁氧体磁铁中的铁氧体烧结磁铁示出其制造方法的一例。本实施方式的铁氧体烧结磁铁的制造方法中,铁氧体烧结磁铁可经由配合工序、煅烧工序、粉碎工序、成型工序及烧结工序进行制造。以下说明各工序。<配合工序>配合工序中,配合铁氧体磁铁的原料,得到原料组成物。首先,作为铁氧体磁铁的原料,可举出包含构成铁氧体磁铁的元素中的1种或2种以上的化合物原料化合物。原料化合物优选为例如粉末状的化合物。作为原料化合物,可举出各元素的氧化物、或通过烧结成为氧化物的化合物碳酸盐、氢氧化物、硝酸盐等,例如能够示例:SrCO3、LaOH3、Pr6O11、Nd2O3、ZnO、Fe2O3、BaCO3、CaCO3及Co3O4等。原料化合物的粉末的平均粒径从例如可进行均质的配合的观点出发,优选设为0.1~2.0μm程度。另外,原料粉末中,也可以根据需要配合其它的副成分的原料化合物元素单体,氧化物等。配合能够通过如下进行,例如以得到期望的铁氧体磁铁的组成的方式称量各原料,使用湿式磨碎机、球磨机等混合0.1~20小时程度,并进行粉碎处理。此外,该配合工序中,不需要混合全部的原料,也可以在后述的煅烧后再添加一部分。<煅烧工序>煅烧工序中,将配合工序中得到的原料粉末进行煅烧。煅烧能够在例如空气中等的氧化性氛围中进行。煅烧的温度优选设为1000~1340℃的温度范围,更优选为1100~1340℃,进一步优选为1250~1340℃。煅烧的时间能够设为1秒钟~10小时,优选为1秒钟~3小时。通过煅烧得到的煅烧体包含上述那样的主相M相60.0摩尔%以上。主相的一次粒径优选为10μm以下,更优选为2μm以下。煅烧工序中,升温速度优选为5℃分钟以上,更优选为15℃分钟以上。另外,降温速度优选为7~1000℃分钟,更优选为50~1000℃分钟。<粉碎工序>粉碎工序中,将通过煅烧工序成为颗粒状或块状的煅烧体进行粉碎,再次做成粉末状。由此,后述的成型工序中的成型变得容易。该粉碎工序中,也可以添加配合工序中未配合的原料原料的后添加。粉碎工序也可以由例如在将煅烧体以成为较粗的粉末的方式粉碎粗粉碎之后,将其进一步微细地粉碎微粉碎的两个阶段的工序构成。粗粉碎可以使用例如振动磨机等进行至平均粒径成为0.5~5.0μm。微粉碎中,将通过粗粉碎得到的粗粉碎材料进一步利用湿式磨碎机、球磨机、喷磨机等进行粉碎。微粉碎中,以得到的微粉碎材料的平均粒径优选成为0.08~2.0μm,更优选成为0.1~1.0μm,进一步优选成为0.2~0.8μm程度的方式进行粉碎。微粉碎材料的比表面积例如通过BET法求得。优选设为7~14m2g程度。优选的粉碎时间根据粉碎方法不同而各异,例如在湿式磨碎机的情况下,优选为30分钟~10小时,在利用球磨机的湿式粉碎中,优选为10~50小时程度。在粉碎工序中添加原料的一部分的情况下,添加例如能够在微粉碎工序中进行。另外,微粉碎工序中,为了提高烧结后得到的烧结体的磁取向度,优选添加例如以通式CnOHnHn+2表示的多元醇。在此,作为多元醇,通式中,优选n为4~100的多元醇,更优选为4~30的多元醇,进一步优选为4~20的多元醇,更加优选为4~12的多元醇。作为多元醇,例如可举出山梨糖醇。另外,也可以并用2种以上的多元醇。另外,除了多元醇之外,也可以并用其它公知的分散剂。在添加多元醇的情况下,其添加量相对于添加对象物例如粗粉碎材料优选为0.05~5.0质量%,更优选为0.1~3.0质量%,进一步优选为0.2~2.0质量%。此外,微粉碎工序中添加的多元醇在后述的烧结工序中进行热分解而被除去。<成型工序>成型工序中,将在粉碎工序后得到的粉碎材料优选为微粉碎材料在磁场中进行成型,得到成型体。成型也可以通过干式成型及湿式成型的任一方法进行。从提高磁取向度的观点出发,优选通过湿式成型进行。在通过湿式成型进行成型的情况下,优选例如通过将上述的微粉碎工序以湿式进行而得到浆料后,将该浆料浓缩成预定的浓度,从而得到湿式成型用浆料。浆料的浓缩能够利用离心分离或压滤机等而进行。湿式成型用浆料优选在其总量中,微粉碎材料占据30~80质量%程度。在浆料中,作为分散微粉碎材料的分散介质,优选为水。在该情况下,浆料中也可以添加葡糖酸、葡糖酸盐、山梨糖醇等表面活性剂。另外,作为分散介质,也可以使用非水系溶剂。作为非水系溶剂,能够使用甲苯或二甲苯等的有机溶剂。在该情况下,优选添加油酸等的表面活性剂。此外,湿式成型用浆料也可以通过向微粉碎后的干燥状态的微粉碎材料中添加分散介质等进行制备。湿式成型中,接下来对该湿式成型用浆料进行磁场中成型。在该情况下,成型压力优选为9.8~49MPa0.1~0.5toncm2程度,施加的磁场优选设为398~1194kAm5~15kOe程度。<烧结工序>烧结工序中,将成型工序中得到的成型体进行烧结并做成烧结体。由此,得到上述那样的由铁氧体磁铁的烧结体构成的永久磁铁铁氧体烧结磁铁。烧结能够在大气中等的氧化性气氛中进行。烧结温度优选为1050~1340℃,更优选为1250~1340℃。另外,烧结时间保持于烧结温度的时间优选为0.5~3小时程度。此外,在通过上述那样的湿式成型得到成型体的情况下,在使该成型体未充分干燥的状态下进行烧结时,包含分散介质等的成型体被急剧地加热,激烈地产生分散介质等的挥发,成型体中可能产生裂纹。因此,从避免这种不良情况的观点来看,优选在到达至上述的烧结温度之前,例如从室温到100℃程度,以0.5℃分钟程度的缓慢的升温速度进行加热而使成型体充分干燥,由此,抑制裂纹的产生。另外,在添加了表面活性剂分散剂等的情况下,优选在例如100~500℃程度的温度范围内,以2.5℃分钟程度的升温速度进行加热,由此,将它们充分除去脱脂处理。此外,这些处理也可以在烧结工序的开始进行,也可以在烧结工序之前单独进行。另外,为了控制Fe2+的生成及含量,优选从500℃程度到烧结温度的升温速度、和或从烧结温度到室温的降温速度为6~200℃分钟,更优选为25~200℃分钟。另外,为了控制Fe2+的含量,也可以在氮中、氩气中等的非氧化性气氛下进行烧结,也可以在具有任意的氧浓度的氧化性气氛下等进行烧结。以上,说明了铁氧体烧结磁铁的优选的制造方法,但只要至少使用本实施方式的铁氧体磁铁,制造方法就不限定于上述,条件等能够适当变更。另外,作为磁铁,在不制造铁氧体烧结磁铁,而制造粘结磁铁的情况下,在例如进行至上述的粉碎工序之后,将得到的粉碎物与粘合剂进行混合,并将其在磁场中进行成型,由此,能够得到包含本实施方式的铁氧体磁铁的粉末的粘结磁铁。实施例以下,通过实施例更详细地说明本发明,但本发明不限定于这些实施例。[实验例1]铁氧体烧结磁铁的制造首先,作为铁氧体磁铁的主组成的原料,准备氧化铁Fe2O3、碳酸锶SrCO3、氧化钴CoO及氢氧化镧LaOH3,将这些原料以烧结后的烧结体的组成成为以下的组成式的方式进行称量。组成式:A1-xRxFe12-yMeyz式中,A=Sr,R=La,Me=Co。另外,x=0.82,y=0.39,z=0.94。接下来,将称量后的原料利用湿式磨碎机混合1小时,进行粉碎,得到浆料配合工序。干燥该浆料之后,大气中将升温速度和降温速度设为15℃分钟,并以1310℃保持2小时进行煅烧煅烧工序。将得到的煅烧粉利用小型棒振动磨机粗粉碎10分钟。相对于烧结后的烧结体,以SiO2换算计成为0.05质量%的方式添加SiO2。将该混合物使用湿式球磨机微粉碎40小时,得到浆料以上,粉碎工序。将在微粉碎后得到的浆料以固体成分浓度成为73~75%的方式进行调整,做成湿式成型用浆料。将该湿式成型用浆料使用湿式磁场成型机,在796kAm10kOe的施加磁场中进行成型,得到具有直径30mm×厚度15mm的圆柱状的成型体成型工序。得到的成型体在大气中,以室温充分干燥,从室温到500℃,以升温速度5℃min进行升温。从500℃起,为了改变Fe2+量,以表1的条件进行烧结,由此,得到铁氧体烧结磁铁烧结工序。另外,加工实验例1中得到的各铁氧体烧结磁铁的圆柱的上下表面后,使用最大施加磁场955kAm12kOe的B-H示踪仪,求得这些的BrG及HcJOe。另外,通过上述的X射线衍射求得实验例1中得到的各铁氧体烧结磁铁中的M相具有磁铅石结构的铁氧体相的比率摩尔%。另外,将实验例1中得到的各铁氧体烧结磁铁的各样品进行粉碎,添加草酸和浓磷酸strongphosphoricacid进行加热溶解。向其中添加脱气水,通过使用了K2Cr2O7溶液的电位差滴定,求得铁氧体烧结磁铁的Fe2+含量。将得到的结果统一表示于表1中。【表1】根据表1可知,当Fe2+的含量超过0.1质量%且低于5.4质量%时,得到具有4.7kG以上的Br及2.0kOe以上的HcJ的烧结体,可知得到较高的Br和良好的HcJ。[实验例2]铁氧体烧结磁铁的制造实验例2中,以烧结后的烧结体的组成成为表2的组成式的方式,并在烧结工序中,将直到500~1290℃设为55℃分钟,以1290℃保持1小时后,将降温速度设为100℃分钟冷却至室温,除这些以外,与实验例1同样地进行铁氧体烧结磁铁的制造。该实验例2中,特别是以大幅改变Lax=0.51~0.91的原子比率的方式,制造样品2-1~2-8的各种铁氧体烧结磁铁。使用实验例2中得到的各铁氧体烧结磁铁,与实验例1同样地求得这些BrG、HcJOe、M相比率、Fe2+的含量。将得到的结果表示于表2中。【表2】根据表2可知,La的比率x为0.60以上且0.84以下时,得到具有4.7kG以上的Br及具有2.0kOe以上的HcJ的烧结体,可知得到较高的Br和良好的HcJ。[实验例3]铁氧体烧结磁铁的制造实验例3中,除了以烧结后的烧结体的组成成为表3的组成式的方式,并将烧结温度设为1310℃以外,其它与实验例2同样地进行铁氧体烧结磁铁的制造。该实验例3中,特别是以大幅改变Coy=0.20~0.61的原子比率的方式,制造样品3-1~3-7的各种铁氧体烧结磁铁。使用实验例3中得到的各铁氧体烧结磁铁,与实验例1同样地求得这些BrG、HcJOe、M相比率、Fe2+的含量。将得到的结果表示于表3中。【表3】根据表3,Co的比率y为0.30以上且0.60以下时,得到具有4.7kG以上的Br及具有2.0kOe以上的HcJ的烧结体,可知得到较高的Br和良好的HcJ。另外,xyz超过1.60且低于4.00时,得到具有4.7kG以上的Br及具有2.0kOe以上的HcJ的烧结体,可知得到较高的Br和良好的HcJ。[实验例4]铁氧体烧结磁铁的制造实验例4中,作为铁氧体磁铁的主组成的原料,准备了氧化铁Fe2O3、碳酸锶SrCO3、氧化钴Co3O4及及氢氧化镧LaOH3,将这些原料以煅烧后的组成成为以下的组成式的方式进行称重。组成式:A1-xRxFe12-yMeyz式中,A=Sr,R=La,Me=Co。另外,x=0.80,y=0.35,z=1.10。接下来,将称重后的原料以湿式磨碎机混合1小时,进行粉碎,得到了浆料配合工序。将该浆料进行干燥后,在大气中进行将升温速度和降温速度设为15℃分钟,并以1310℃保持2小时的煅烧煅烧工序。将得到的煅烧粉利用小型棒振动磨机进行粗粉碎10分钟。向该粗粉碎材料中,以烧结后的烧结体成为以下的组成式且成为表4的组成的方式,分别添加氧化铁、碳酸锶、氧化钴及及氢氧化镧。另外,相对于烧结后的烧结体,以SiO2换算计的Si的含量成为0.04质量%的方式添加SiO2。将该混合物利用湿式球磨机微粉碎40小时,得到浆料以上,粉碎工序。组成式:A1-xRxFe12-yMeyz式中,A=Sr,R=La,Me=Co。将在微粉碎后得到的浆料以固体成分浓度成为73~75%的方式调整,做成湿式成型用浆料。将该湿式成型用浆料使用湿式磁场成型机,在796kAm10kOe的施加磁场中进行成型,得到具有直径30mm×厚度15mm的圆柱状的成型体。得到的成型体在大气中以室温充分干燥,将直到室温~500℃设为升温速度5℃分钟,将直到500~1310℃设为55℃分钟,以1310℃保持1小时。保持后,进行将降温速度以100℃分钟冷却至室温的烧结工序,由此,得到铁氧体烧结磁铁。该实验例4中,特别是以大幅改变zz=0.70~1.10的原子比率的方式,制造样品4-1~4-10的各种铁氧体烧结磁铁。使用实验例4中得到的各铁氧体烧结磁铁,与实验例1同样地求得它们的BrG、HcJOe、M相比率、Fe2+的含量。将得到的结果表示于表4中。【表4】根据表4,当z为0.80以上且低于1.10时,得到具有4.7kG以上的Br及具有2.0kOe以上的HcJ的烧结体,可知能得到较高的Br和良好的HcJ。[实验例5]铁氧体烧结磁铁的制造实验例5中,作为铁氧体磁铁的主组成的原料,准备氧化铁Fe2O3、碳酸锶SrCO3、氧化钴Co3O4及氢氧化镧LaOH3,将这些原料以煅烧后的组成成为以下的组成式的方式进行称量。组成式:A1-xRxFe12-yMeyz式中,A=Sr,R=La,Me=Co。另外,x=0.80,y=0.35,z=0.94。接着,将称量后的原料以湿式磨碎机混合1小时,进行粉碎,得到浆料配合工序。将该浆料进行干燥后,在大气中进行将升温速度和降温速度设为15℃分钟,且以1310℃保持2小时的煅烧煅烧工序。将得到的煅烧粉利用小型棒振动磨机粗粉碎10分钟。向该粗粉碎材料中,以相对于烧结后的烧结体,Si的含量以SiO2换算计成为表1的值的方式,添加SiO2。将该混合物利用湿式球磨机微粉碎40小时,得到浆料以上,粉碎工序。将在微粉碎后得到的浆料以固体成分浓度成为73~75%的方式进行调整,做成湿式成型用浆料。将该湿式成型用浆料,使用湿式磁场成型机,在796kAm10kOe的施加磁场中进行成型,得到具有直径30mm×厚度15mm的圆柱状的成型体成型工序。得到的成型体在大气中以室温充分干燥,将直到室温~500℃设为升温速度5℃分钟,将直到500~1300℃设为55℃分钟,并以1300℃保持1小时。保持后,进行以降温速度100℃分钟冷却至室温的烧结工序,由此,得到了铁氧体烧结磁铁烧结工序。使用实验例5中得到的各铁氧体烧结磁铁,与实验例1同样地求得它们的BrG、HcJOe、M相比率、Fe2+的含量。将得到的结果表示于表5中。【表5】根据表5,SiO2的含量超过0.002质量%且低于0.15质量%时,得到具有4.7kG以上的Br及具有2.0kOe以上的HcJ的烧结体,并得到较高的Br和良好的HcJ。产业上的可利用性本发明的铁氧体烧结磁铁适合用作可变磁力磁铁,另外,也能够适用于各种马达、发电机、扬声器等的汽车用电装部件、电气设备用部件等,特别是能够有助于这些部件的小型·轻量化、高效率化。

权利要求:1.一种铁氧体磁铁,其特征在于,所述铁氧体磁铁具有磁铅石结构,将A、R、Fe及Me各自的金属元素的总量的构成比率以A1-xRxFe12-yMeyz的式1表示时,其中,式1中,A是选自Sr、Ba、Ca及Pb中的至少一种元素,R是选自包含Y的稀土元素及Bi中的至少一种元素且至少包含La,Me是Co、或者Co及Zn,式1中,x、y、及z满足下述式2、3、4及5,0.60≤x≤0.84……20.30≤y≤0.60……30.80≤z<1.10……41.60<xyz<4.00……5所述铁氧体磁铁中的Fe2+含量超过0.1质量%且低于5.4质量%。2.根据权利要求1所述的铁氧体磁铁,其特征在于,所述铁氧体磁铁包含Si,所述Si的含量以SiO2换算计超过0.002质量%且低于0.15质量%。

百度查询: TDK株式会社 铁氧体磁铁

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。