买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】将元数据与硬件固有属性绑定的系统和设备_美国亚德诺半导体公司_201580034810.1 

申请/专利权人:美国亚德诺半导体公司

申请日:2015-06-22

公开(公告)日:2020-09-15

公开(公告)号:CN106576046B

主分类号:H04L9/32(20060101)

分类号:H04L9/32(20060101)

优先权:["20140625 US 62/017,045","20150505 US 14/704,963"]

专利状态码:有效-授权

法律状态:2020.09.15#授权;2017.05.17#实质审查的生效;2017.04.19#公开

摘要:通过获得认证相关的元数据以及将其与诸如物理不可克隆函数的与信任根有关的信息组合而将诸如从生物计量传感器的输出得到的信息的元数据与硬件固有属性绑定的系统、设备和方法。元数据可以从诸如生物计量传感器的传感器取得,信任根可以是物理不可克隆函数,元数据和信任根信息的组合可以采用散列函数,并且来自该散列过程的输出可用作信任根的输入。组合的信息能够用于交互式或非交互式认证。

主权项:1.一种认证设备,所述认证设备被配置成将认证相关的元数据与硬件固有属性绑定,所述认证设备包括:a物理不可克隆函数PUF电路,具有PUF电路输入和PUF电路输出,所述PUF电路被构造成响应于接收到输入值而生成表征所述PUF电路和所述输入值的输出值;以及b处理器,其连接到所述PUF电路,所述处理器被配置成:i将与所述认证设备相关联的设备注册参数和与所述设备相关联的认证相关的元数据组合以产生绑定值;ii将所述绑定值传送到所述PUF电路并接收来自所述PUF电路的输出值,其中所述输出值是根据所述PUF电路、被组合以产生所述绑定值的所述设备注册参数和所述认证相关的元数据来生成的;以及iii创建认证证据标记作为所述输出值的函数。

全文数据:将元数据与硬件固有属性绑定的系统和设备[0001]相关申请的交叉引用[0002]本申请要求于2014年6月25日提交的序号为62017,045的美国临时专利申请以及于2015年5月5日提交的序号为14704,963的美国专利申请的优先权的利于,这两个申请中的每一个申请均通过引用合并于此。背景技术[0003]认证协议通常依赖于实体所持有的私有信息从而确立身份。在传统系统中,私有数据可以包含用户名和口令对、个人认证号PIN或密码密钥。多因素认证协议通常需要两种或更多种标识信息,诸如实体所知的信息(例如,用户名和口令)、实体所具有的某事物例如,智能卡或标记)以及代表了实体为何物的信息例如,指纹)。[0004]元数据包括与认证中所涉及到的实体的身份或状态有关的辅助信息。元数据的示例包括生物计量数据、传感器输出、全球定位数据、口令或PIN以及可用于构造实体的身份或状态的特性的类似的辅助信息。生物计量数据包括足够独特以便用作身份证据的用户的物理特性例如,指纹、视网膜、虹膜、语音和静脉模式的测量。[0005]然而,依赖于传感器输出的系统会易受伪造传感器输出的攻击;虽然生物计量系统使用有力的属性进行认证,但是它们会面临与敏感生物计量数据的暴露和或丢失有关的挑战。由于传感器将测得的物理特性变换成二进制串,所以没有进一步措施,系统不能将从传感器返回的串与没有传感器的对手所提供的串区分开,二进制串由计算机系统存储注册),然后与随后在认证请求时传感器所生成的二进制串比较。因此,例如,对手会试图观察特定用户的生物计量传感器的输出且通过将暗中获得的生物计量数据提供给系统来"克隆"用户。对手可以类似地试图通过读取系统中所存储的生物计量数据来克隆用户。进一步,由于在生物计量系统中所使用的特征按定义趋向于基本不变,所以用户的生物计量数据的损害无法以如下方式来弥补:能够简单地更改丢失的用户口令。[0006]个体硬件设备所独有和固有的特性例如,电线电阻、初始存储器状态、CPU指令定时也可以被提取且用作认证协议的部分。这样的主要例子是物理不可克隆函数PUFWUF函数fc将输入域或挑战c映射到输出范围(或应答r,其中映射是基于计算f·的设备所独有的特性来定义的。f·的电路或硬件描述可以在所有设备上都相同,而从域到范围的映射将基于执行计算f·的电路的特定的硬件设备而是独特的。[0007]在各种设备认证方案中,物理不可克隆函数PUF已经被使用,而使得每个设备都具有本质上与设备所链接的独特身份。RUhrmair等人("ModelingattacksonPhysicalUnclonableFunctions,Proceedingsofthe17thACMconferenceonComputerandcommunicationssecurity,CCS'10,第237-249页,ACM,2010定义了PUF设备的三个不同的类:[0008]•弱PUF通常仅用于取得私钥。挑战空间会受限制,并且假设应答空间永不显露。典型的构造包括SRAMPUFHolcomb等人,"InitialSRAMStateasaFingerprintandSourceofTrueRandomNumbersforRFIDTages,',InProceedingsoftheConferenceonRFIDSecurity,2007,ButterflyPUFKumar等人,"Extendedabstract:TheButterflyPUFProtectingIPonEveryFPGA,"IEEEInternationalWorkshoponHardware-OrientedSecurityandTrust,第67-70页,2008,ArbiterPUFLee等人,"AtechniquetobuildasecretkeyinintegratedcircuitsforidentificationandauthenticationapplicationsIEEESymposiumonVLSICircuits:DigestofTechnicalPapers,第176-179页,2004,RingOscillatorPUFSuh等人,"PhysicalUnclonableFunctionsforDeviceAuthenticationandSecreteKeyGeneration,',Proceedingsofthe44thannualDesignAutomationConference,DAC'07,第9-14页,ACM,2007,以及CoatingPUFTuyls等人,"Read-ProofHardwarefromProtectiveCoatings,''Proceedingsofthe8thinternationalconferenceonCryptographicHardwareandEmbeddedSystems,CHES'06,第369-383页,Springer,2006PUF〇[0009]•强PUF假设为⑴物理上不可能克隆,(ii不可能在合理的时间内采集挑战应答对的完整集合通常要花费数周量级),以及(iii难以预测对随机挑战的应答。例如,Ruhrmair"ApplicationsofHigh-CapacityCrossbarMemoriesinCryptography,',IEEETrans.Nanotechnol.,卷10,3期:489-498,2011所描述的超高信息内容(SHICPUF可被视为强HJFd[0010]•受控PUF满足了强PUF的所有标准,并且另外实现了能够计算更先进功能的辅助控制单元以便以密码学方式增强协议。[0011]PUF输出是有噪声的,因为尽管评估相同的输入其也略微变化。这通常是利用模糊提取来解决的,这是一种开发用来消除生物计量测量中的噪声的方法。(参见Jiiels等人,"FuzzyCommitmentScheme",Proceedingsofthe6thACMconferenceonComputerandCommunicationsSecurity,CCS'99,第28-36页,ACM,1999D模糊提取可以部分地在具有PUF的设备内采用,例如在辅助控制单元内,使得输出对于固定输入是恒定的。模糊提取或逆模糊提取可以例如采用如Juels等人所描述的"安全略图"来存储待重构的敏感值PUFP'复制PUFP而使得它们的输出分布是t统计接近的概率小于某充分小的elD[0015]2.不可预测性:期望的是对手无法以大于可忽略概率至少没有实际访问设备预测设备对挑战c的PUF应答r,并且助手数据没有向对手显露出任何关于PUF应答的信息。假设全部实体都必然是概率多项式时间PPT,即,仅能够高效地关于全局安全参数λ其是指给定为1λ。[0018]游戏如下进行:[0019]1.对手Y向HJF设备P发出多项式多个关于安全参数其中挑战集合是整个挑战空间贫P的真子集。[0020]2.PUF设备P将应答IriIri-PCi}返回给^〇[0021]3.对手乂最终输出不是挑战查询原始集合%内的挑战c。不允许对手关于所提交的挑战c来查询PUF设备P。[0022]4.对手j会再次向PUF设备P发出多项式多次挑战新集名不允许对手关于所提交的挑战c来查询PUF设备P。[0023]5.PUF设备P返回应答{r'iIr'i-Pc'i}给乂[0024]6.对手#最终输出P对所提交的挑战c的应答的猜测r'。[0025]仅当猜测r'等于P对¥所提交的挑战c的实际应答r-Pc时,对手才赢得游戏。如所提到的,PUF的输出有噪声且将在任何固定输入上有略微变化,因此相对于模糊提取器的输出来视为相等(例如,Dodis等人,"FuzzyExtractors:HowtoGenerateStrongKeysfromBiometricsandOtherNoisyData'SIAMJ.Comput.,^38,no.1:97-139,2008〇[0026]3.鲁棒性,BP,固定PUFP在同一输入x上产生t距离应答的概率小于某充分小的e2。[0027]4.不可区分性:PUF设备的输出(通常是模糊提取器输出)优选地计算上不能与同长度I的随机串区分开,使得PPT对弓至多可忽略地大于12。PUF的不可区分性可以例如通过这样的游戏来评估:其中对手#被要求区分用于PUFP的模糊提取器的输出r和同长度I的随机选定的轉[0028]PIF-TND,PIF不可反分忡游戏[0031]该游戏进行如下:[0032]1.对手^对于任何挑战Ci€fρ执行注册阶段。[0033]2.PUF设备返回相应的助手串Hi,其利用PUF的输出Pc遮挡纠错后的敏感值ECCR1。将该挑战-助手对集合CuH1标记为贫JT。[0034]3.对手现在请求对于任何的PUF应答n=PCi。将该步骤中的请求[0039]8.对于所有的请求^i辛c,PUF设备返回集合{ιΛIVi-P。[0040]9.对手输出猜测位b',并且当b'=b时成功。[0041]PUF的相关的评估由Hori等人的"QuantitativeandStatisticalPerformanceEvaluationofArbiterPhysicalUnclonableFunctionsonFPGA,''2010InternationaIConferenceonReconfigurableComputingandFPGAsReConFig,第298-303页,2010;Maiti,AsystematicApproachtoDesignanEfficientPhysicalUnclonableFunction,dissertation,VirginiaTech,2012,以及其它。[0042]各种认证方案使用知识的零知识证据,其是一种假设给定陈述为真、同时除此事实之外不显露任何信息的方法。零知识证据是两方之间的交互:即,希望确立陈述的有效性的证明者淨,以及必须确信陈述为真的验证者t。应当以压倒性的概率使验证者确信,真实的陈述确实是真的。利用知识的零知识证据,验证者可以不使用来自先前证据的消息来说服新的一方陈述的有效性,并且消息仅显露出单比特信息:证明者淨是否拥有秘密。存在两种一般类的零知识证据:交互式零知识证据,其中一系列消息在证明者#与验证者少之间交换,以及非交互式零知识证据,其中证明者传达单条消息而不与f交互,而使少确信淨拥有秘密。许多交互式零知识证据系统要求多次迭代来确立陈述的有效性。也即,每个交互可以某概率而成功,即使证明者没有拥有秘密或者陈述为假)。因此,如果当陈述为假时成功的概率是P,则协议运行η次直至I-Pn充分接近1。[0043]Ivanov等人的美国专利8,577,091和Armstrong等人的美国专利8,566,579描述了认证系统,其中需要固有的硬件特性例如,PUF输出)以及人类生物计量来成功地完成认证,但是均没有提供用于必然地将PUF与认证链接的方法或处置非敏感传感器输出的方法。[0044]Frikken等人("RobustAuthenticationusingPhysicallyUnclonableFuncitons,''InformationSecurity,LectureNotesinComputerScience的卷5735,第262-277页,Springer,2009教导了一种将元数据(例如,PIN组合到PUF的输入的方法,但是没有提供到任意元数据例如,生物计量数据)或非敏感元数据例如,温度,压力)的扩展。[0045]Rust编辑)在"D1·IReportonusecaseandarchitecturerequirements,',,HolisticApproachesforIntegrityofICT-Systems2013提到了将生物计量特征与基于单元的PUF合并的思想,但是没有对于实现的手段进行详述。[0046]Erhart等人的美国专利申请公开20110002461描述了一种通过采用PUF来认证传感器输出的方法,其提取物理传感器硬件的独特特性。但是该方法没有直接将传感器的输出与硬件的认证链接,还要求敏感的生物计量传感器输出离开设备。发明内容[0047]设备的固有身份是通过生成注册标记或公钥来构造的,该注册标记或公钥基于设备所独有的固有特性,诸如物理不可克隆函数PUF。认证系统使用设备的注册标记或公钥来验证设备的真实性,优选第通过零知识证据。敏感元数据优选第也并入注册标记或公钥中,这可以通过将元数据与硬件固有例如,PUF数据组合的散列函数的算法工具来实现。认证可以是交互式的或非交互式的。附图说明[0048]图1是示出了在本发明的实施方案中的元数据绑定操作流的功能图;以及[0049]图2是示出了提供用于任意传感器输出的零知识证据生成的实施方案的功能图。具体实施方式[0050]虽然本发明一般应用于元数据,但是描述了使用生物计量传感器的示范性的实施方案。还参考使用椭圆曲线密码学包含相关联的术语和归约)的实施方案的实施例描述了本发明,但是发明构思和其中的教导同样应用于其它各种密码学方案,诸如采用不同问题的密码学方案,比如离散对数或因数化,并且本发明不限于本文所描述的可以利用或借助本发明所采用的各种附加特征。[0051]为了构造设备的固有身份,生成设备的身份的公共表示此处称为注册标记或公钥)。在该设备注册过程中,从设备采集密码学注册标记。用于注册和认证的椭圆曲线数学架构可以使用,但是其它适合的架构例如,离散对数架构,在这方面美国专利8,918,647通过引用方式合并于此将提供相同的功能。响应于服务器的挑战查询C1或多个查询),从PUF设备采集密码学注册标记或标记系列){cnP^Amodp}。在一个实施方案中,设备随机地从空间{〇,1}λ中均匀地选择私销,其中λ是安全参数例如,模数ρ中的位数并且计芻_为设备的公钥,其中G是椭圆曲线ί.的阶ρ的基点。使用算法1,设备能够任选地利用PUF而无需与服务器交互来执行本地注册协议。这允许每个PUF电路生成本地公I这在引导自举更复杂的密钥设置算法时可能是有用的;但是在密钥设置在设备内内部地(而不是在一组不同设备之间外部地执行的情况下引导自举可能是不必要的)。在另一实施方案中,设备可以接受来自外部服务器的椭圆曲线参数和挑战,服务器随后存储设备的挑战和助手数据。[0053]在采用椭圆曲线密码学的实施方案的实施例中,下面的算法2和3能够任选地用来允许PUF使能的设备来存储和取回敏感值,而不将任何输咸信息存储在非易失性存储器内。算法2说明了使用PUF存储敏感值算法3说明了的动态再生成。挑战C1和助手数据helper可以是公共的,因为两者均没有显露出任何有关敏感值的内容。这些值可以本地地存储到设备,或者在外部存储到不同的设备中。如外部存储,则值将在运行算法之前被提供给设备。虽然本实施例使用了通过异或®对JP密,但是还可以被用作其它加密算法例如,AES的密钥来使能存储和取回任意大小的值。[0056]每当0和0'是t接近时,纠错码ECC能够传递给译码算法D,译码算法将恢复敏感值[0057]在椭圆曲线实施方案中,在接收到来自设备的认证请求时,服务器能够进行Chaum等人("AnImprovedProtoclforDemonstratingPosessionofDiscreteLogarithmsandsomeGeneralizations,",Proceedingsofthe6thannualinternationalconferenceonTheoryandapplicationsofcryptographictechniques,EUROCRYPT'87,第127-141,Springer,1988具有设备d的零知识证据协议的椭圆曲线变体从而认证设备d,如算法4所示。[0059]算法4中的验证服务器为设备提供了特定于当前证据的特定场合值,从而防止窃听的对手使用来自有效设备的先前的证据来成功地完成认证协议且伪装为设备。非交互式零知识证据免除了该通信要求,并且允许在不与验证端点进行交互的情况下完成证据。实现非交互式构造要求证明设备以如下方式代表验证者生成特定场合:防止证明的终端设备操纵证据。[0060]-种构造非交互式零知识证据的方法是设备构造特定场合N为N-HA|卜),其中A是设备的公钥,Η·是密码学散列函数,τ是时间戳,XI|y表示X和y的级联。时间戳确保通过证明设备所构造的先前的证据在未来不会被对手重放,而散列函数确保证明设备无法以对手的方式操纵特定场合。对时间戳的信赖实质上比对全局同步时钟的信赖更不繁重。也即,时间戳无需确切地匹配在到达证明者时的当前时间戳,这消除了影响证据的网络延时的可能。相反,验证的端点核验时间戳是合理地当前的(例如,第二粒度级且单调地增加以防止重放攻击。对于PUF使能设备的示范性的非交互式零知识证据描述于算法5中。[0062]元数据绑定[0063]元数据绑定指的是将辅助元数据并入认证过程的过程。元数据是认证协议所应依赖的任意辅助信息。也即,没有正确的元数据,认证应当是失败的。元数据可表征为敏感的或非敏感的,其中敏感元数据不应离开设备例如,口令,PIN,生物计量),而非敏感元数据可以离开设备例如,关于温度、压力的传感器输出)。[0064]敏感元数据优选地并入在注册期间所创建的公共身份标记中。例如,当没有提供敏感元数据时,设备注册输出仅表征设备的公共身份。然而,当在注册期间提供了敏感元数据例如,生物计量,PIN等时,公共身份表征设备和敏感元数据。本发明的一个实施方案永不要求敏感元数据离开设备,因为完成零知识证据协议,而无需验证者对敏感元数据具有访问权。[0065]优选地,非敏感元数据不并入注册过程,使得从注册输出的公共身份不依赖于非敏感元数据例如,对于温度、压力等的传感器输出)。相反,非敏感元数据优选地并入零知识证据协议中,使得设备和或用户真实性的证据仅在对应的非敏感元数据也提供给验证者的情况下才有效。这允许设备和或用户具有单一公共身份,而被给予对非敏感元数据有访问权的验证者能够验证设备和或用户的真实性以及元数据的源头。[0066]图1示出了元数据绑定的过程流。首先,注册参数1被取回且可以通过密码学散列函数3与敏感元数据2组合。密码学散列函数的输出被用作物理不可克隆函数4的输入,物理不可克隆函数4将注册参数和任选的元数据与硬件身份链接。最后,注册标记5被返回作为PUF输出的函数。[0067]-般地,散列函数被定义为Η·:{0,1}*-{0,1}\其中人是固定常数。也即,散列函数Η·或者显式地写为Hash·取任意大小的输入,并且映射到有限输出域。对于密码学设定,散列函数必须满足附加的性质。在认证协议中绑定元数据的上下文中,散列函数应当优选地是单向的、耐冲突的,并且满足雪崩条件。单向意味着当给定输出HX时确定输入X其在计算上是不可行的,确保输出HX不显露有关输入X的任何信息。耐冲突意味着提供不同的元数据集合y而使得Hx=Hy是计算上不可行的,其中X是对于给定实体的正确元数据。雪崩条件意味着,的每个位以概率12与HX互补,其中X是任何散列输入,无是单个位被互补的X,确保输出HX响应于输入X的微小变化而实质上变化,这允许对待检测元数据进行任何改变且强制失败的认证。[0068]-种绑定元数据的方式是将PUF输入X简单地重新定义:而不是HCl,G,p,q。因此,修正的注册算法6变成:[0070]然而,其它各种值的置换与所使用的数学架构有关可以散列以产生并入了元数据的PUF输入,而且一个或多个值可以迭代地散列和或散列值被嵌套例如:等等)。进一步,可以采用其它用于链接和或组合参数的方法(例如,全部或无变换all-or-nothingtransformation。[0071]由于散列函数的雪崩性质,元数据必须确切地相同从而使认证成功。然而,生物计量认证的示范性的实施方案经常导致噪声,其中尽管观察到相同的特性例如,指纹、虹膜等),但是扫描略微不同。因此,诸如模糊提取器的工具可以优选地被采用来确保生物计量可靠地返回恒定值。例如,对于元数据的恒定值^可以被选定且链接到相关联的公共助手数据值办;有噪声的生物计量扫描少则能够用来计算其中ECC是纠错码,并且被给予对新的生物计量扫描^的访问权,也即,t接近通过计算来恢复恒定值,其中D是对应的错误译码算法。[0072]图2示出了构造零知识证据的过程流,演示在使用生物计量认证传感器例如,指纹扫描仪)的实施方案中传感器完整性、用户认证和传感器输出验证。硬件可以是模块例如,U.are.U4500的部分,或者仅限于传感器例如,TCS4KSwipeSensor。优选地,PUF电路例如,环形振荡器、SRAM、仲裁器等将直接与传感器硬件集成,使得对传感器硬件的修改改动PUF映射。该设备的一个实施方案可以包括XilinxArtix7现场可编程门阵列FPGA平台,配备有例如215,000个逻辑单元,13兆字节的块随机存取存储器,以及700个数字信号处理DSP片。在采用例如椭圆曲线密码学的实施方案中,硬件数学引擎可以例示于板上DSP片中,PUF构造位于逻辑单元内,逻辑处理核包括到PUF的输入和输出且构造成控制那些以及设备的外部输入和输出且执行算法发送椭圆曲线和其它数学运算到数学引擎),诸如上文所述的那些。[0073]首先,取回注册参数6,注册参数可以通过密码学散列函数8与敏感元数据7组合。密码学散列函数的输出被用作物理不可克隆函数9的输入,物理不可克隆函数9将注册参数和敏感元数据与硬件身份链接。接着,证据参数10和传感器输出11通过密码学散列函数12链接。物理不可克隆函数9的输出和密码学散列函数12的输出被合成以生成零知识证据13,其输出将说服验证者传感器的完整性、认证用户且验证传感器输出的证据标记14。[0074]算法7提供了指纹扫描如何与认证协议绑定而使得设备和指纹必须匹配那些原始注册的信息的实施例。非敏感元数据例如,对于温度、压力等的传感器输出)可以通过被并入特定场合N的构造且将:供给验证者而并入非交互式认证算法中。因此,如男ZE配传感器的输出,则验证者仅能够构造特定场合N并且因此,变量c')。[0076]首先,用户的指纹扫彳5原始指纹扫描FP的助手数据相结合使用来恢复元数据值·^α接着,元数据值5作?耶的输入,使得PUF输出取决于元数据。为了绑定非敏感元数:5到证据,其用来构造特定场合Ν,特定场合N取决于公共身份A以及当前时间戳τ其防止重放攻击)。非敏感元数据,ΐ后提供给验证者,因为其现在有必要验证证据。(如果非敏感元数据仅应当显露给验证者,则可以加密发送)。最后,设备构造非交互式零知识证据,这使得服务器能够验证设备和敏感和非敏感元数是否正确。[0077]还可以通过要求服务器将特定场合N发布给设备来构造交互式零知识证据。该示例性的构造图不在算法8中。[0079]在本发明的实施方案中,(敏感和或非敏感元数据的添加是任选的。也即,可以包含非敏感元数据,同时排除敏感元数据。这仅要求公共身份标记不包含敏感元数据。类似地,可以包含敏感元数据,而排除非敏感元数据。这仅要求不利用非敏感元数据构造特定场合。[0080]由于本发明的一个实施方案依赖于椭圆曲线数学架构,所以本领域技术人员将认识到其可以扩展以支持基于密码学强制角色的访问控制RBAC。也即,可以数学方式来规定数据访问笛略和设书日RBAC算法计算将策M映射到{〇,1}中的访问决策的函数这通常是通过构造双线性配对例如,Weil或Tate配对)来实现,并且是本发明的自然扩展。[0081]虽然已经利用各种特征描述了前面的实施方案,本领域普通技术人员将认识到,认证协议无需限于零知识,可以基于其它用来确立身份的密码学构造。例如,设备可以使用其硬件身份来数字地签署分组的内容,并且在分组报头例如,TCP选项报头,其中实施例报头包括{B=r.Gmodp,m=r+HashG,B,A,N.randmodq,x}内包含该签名,并且硬件身份可以应用于其它各种密码学认证技术,并且无需受所提供的实施例的零知识方案限制。

权利要求:1.一种被配置成将认证相关的元数据与硬件固有属性绑定的设备,所述设备具有相关联的设备注册参数和相关联的认证相关的元数据,并且包括a信任根,其具有信任根输入和信任根输出并且构造成响应于输入而生成表征所述信任根的输出值;以及b处理器,其包括与所述信任根输出连接的处理器输入,并且包括与所述信任根输入连接的处理器输出,所述处理器被配置成:i借助算法将与所述设备相关联的设备注册参数和与所述设备相关联的认证相关的元数据组合以产生绑定值;ii将所述绑定值传达给所述信任根输入而使得所述信任根生成相应的输出;以及iii创建标记作为对应于所传达的绑定值的信任根输出的函数。2.如权利要求1所述的设备,其中所述处理器被配置成执行的认证零知识证据包含非敏感元数据。3.如权利要求1所述的设备,其中所述处理器被配置成执行的认证零知识证据是其非交互式的且包括包含非敏感元数据的特定场合。4.如权利要求1所述的设备,其中所述处理器被配置成执行的认证零知识证据是交互式的。5.如权利要求1所述的设备,其中所述处理器被配置成利用密码散列函数借助算法将注册参数与元数据组合。6.如权利要求1所述的设备,其中所述处理器被配置成利用迭代密码散列函数借助算法将注册参数与元数据组合。7.如权利要求1所述的设备,其中所述处理器被配置成借助算法来与注册参数组合的元数据仅包含敏感元数据。8.如权利要求1所述的设备,其中所述处理器被配置成创建的标记是公共身份标记。9.如权利要求1所述的设备,其中所述处理器被配置成借助算法与注册参数组合的元数据仅包含敏感元数据,并且其中所述处理器被配置成创建的标记是公共身份标记。10.如权利要求1所述的设备,其中所述处理器被配置成借助算法组合包括与密码数学架构有关的值的注册参数。11.如权利要求10所述的设备,其中所述处理器被进一步配置成执行椭圆曲线密码学。12.如权利要求11所述的设备,其中与密码数学架构有关的值包含挑战值、椭圆曲线基点和模数。13.如权利要求1、2、3、4、5、6、7、8、9、10、11或12所述的设备,其中所述处理器被进一步配置成,响应于来自外部验证实体的认证请求而执行认证零知识证据,而不将任何敏感元数据传达给外部验证实体。14.如权利要求1、2、3、4、5、6、7、8、9、10、11或12所述的设备,其中所述信任根是物理不可克隆函数("PUF")、信任根输入是PUF输入,并且信任根输出是PUF输出,并且其中所述PUF构造成,响应于特定挑战的输入而生成表征所述PUF和所述特定挑战的输出值。15.如权利要求14所述的设备,其中所述处理器被进一步配置成,响应于来自外部验证实体的认证请求而执行认证零知识证据,而不将任何敏感元数据传达给所述外部验证实体。16.如权利要求14所述的设备,其中所述处理器被配置成借助算法组合包含挑战值的注册参数。17.如权利要求15所述的设备,其中所述处理器被配置成借助算法组合包含挑战值的注册参数。

百度查询: 美国亚德诺半导体公司 将元数据与硬件固有属性绑定的系统和设备

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。