买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】微芯片_松下知识产权经营株式会社_201610789893.1 

申请/专利权人:松下知识产权经营株式会社

申请日:2016-08-31

公开(公告)日:2020-10-16

公开(公告)号:CN106513064B

主分类号:B01L3/00(20060101)

分类号:B01L3/00(20060101)

优先权:["20150910 JP 2015-178763"]

专利状态码:有效-授权

法律状态:2020.10.16#授权;2018.09.21#实质审查的生效;2017.03.22#公开

摘要:本发明提供一种在输送液体时,能够以稳定的液量进行供给的微芯片。其具备:作为微型元件主体的基体1,该基体具有导入液体5的液体入口7a和排出液体的液体出口7b,并具有液体从液体入口向液体出口流动的槽3;将基体的槽覆盖的盖2;以及与槽相对而在盖的内侧面2a固定的液体流动控制膜部4a。液体流动控制膜部是在与液体的流动方向交叉的方向上延伸存在、并且具有以与槽的液体出口的中心相对应的盖中心对应位置2c为中心的半径的圆弧形状的弯曲的带状,在槽中露出,并且在槽内液体的流动方向上配置于盖的内侧面的露出面之后,并且具有比盖的内侧面的露出面的接触角θ1小的接触角θ2。

主权项:1.一种微芯片,具备:板状的基体,其具备入口、出口、液体从所述入口向所述出口流动的槽;和盖,其与所述板状的基体相对而配置,所述盖具有内侧面和外侧面,所述盖的所述内侧面与所述板状的基体相对,在所述盖的所述内侧面,以从所述内侧面向所述槽的底面突出的方式设有具有与所述板状的基体的厚度方向平行的厚度的第1带,所述第1带具有劣弧或圆环的形状,所述第1带的劣弧或圆环的中心位于所述出口,并且所述第1带具有比没有设置所述第1带的部分的所述盖的内侧面小的接触角。

全文数据:微芯片技术领域[0001] 本发明涉及每秒钟处理几此〜几百iiLlitre的液体的微型器件或微芯片等微型元件。背景技术[0002] 关于每秒钟处理几此〜几百此的液体的微型器件或微芯片等微型元件,期望与送液量相应的装置的小型化和低成本化。以往,微型器件或微芯片的流动液体的流路或贮存液体的腔室,为了不使处理的液体向外漏液,包含将两个以上的部件贴合而构成的、除了液体的出入口以外都密封的结构。[0003] 微型器件或微芯片具有一个或多个腔室,通过一条或多条流路将该腔室连结,构成微型器件或微芯片参照专利文献1。[0004] 在先技术文献[0005] 专利文献1:国际公开第2001066947号发明内容[0006] 使用栗等从孔等入口向微型器件或微芯片的腔室注入液体时,由于腔室内的形状、突起或毛细管现象等,将要在腔室内充满的液体的进入路径会根据腔室内的部位而不同。该情况下,如果液体在完全充满腔室内之前到达出口,则液体会在未充满腔室内时就从出口排出。该情况下,腔室内未被液体充满的地方成为气泡,并以该状态残留下来。即使想要将残留的气泡排出而从入口追加注入了液体,液体也会持续从出口排出,气泡多会残留。如果该气泡残留在腔室内,则会产生腔室内的液量不恒定,无法以稳定的液量进行供给这一技术问题。[0007] 因此,本发明的目的是为了解决所述问题,提供一种在输送液体时能够以稳定的液量进行供给的微型元件。[0008] 为达成所述目的,本发明如以下这样构成。[0009] 根据本发明的第1技术方案,提供一种微型元件,所述微型元件具备:[0010] 作为微型元件主体的基体,其具有导入液体的液体入口和排出所述液体的液体出口,并具有所述液体从所述液体入口向所述液体出口流动的槽;[0011] 将所述基体的所述槽覆盖的盖;以及[0012] 与所述槽相对而在所述盖的内侧面固定的膜,[0013] 所述膜具有液体流动控制膜部,从所述基体的膜厚方向观察时,所述液体流动控制膜部在与所述液体的流动方向交叉的方向上具有与所述槽相同的宽度,[0014] 所述液体流动控制膜部在所述槽中露出而配置,[0015] 所述液体流动控制膜部是圆弧形状的弯曲的带状,具有以与所述槽的所述液体出口的中心相对应的所述盖的中心对应位置为中心的半径,[0016] 所述液体流动控制膜部在所述槽内的所述液体的流动方向上,位于所述盖的所述内侧面中的露出面之后,[0017] 所述液体流动控制膜部具有比所述盖的所述内侧面中的所述露出面的接触角小的接触角。[0018] 根据本发明的所述技术方案,即使在从液体入口充满槽内的液体的宽度方向的两侧的先行液最初先于主流液体向液体出口行进的状况下,也能够通过膜部发挥抑制力的作用而使液体的前端形状整齐,能够控制液体的行进和填充部位,能够抑制槽内的气泡残留。附图说明[0019] 图1A是本发明的第1实施方式中的微芯片的腔室的截面侧视图。[〇〇2〇]图1B是从上方观察本发明的第1实施方式中的微芯片的腔室的俯视图。[0021]图1C是图1B的1C-1C线的切割端视图。[〇〇22]图1D是图1B的1D-1D线的切割端视图。[〇〇23]图1E是将微芯片的腔室覆盖的盖的截面侧视图。[0024] 图1F是微芯片的膜的俯视图。[0025] 图2A是作用于在固体表面上的液体的表面张力等的说明图。[0026] 图2B是液体在接触角不同的材料上通过时的、作用于在液体固体表面上的液体的表面张力等的说明图。[0027] 图3A是以往例的微芯片的截面侧视图。[〇〇28]图3B是以往例的微芯片中取下盖的状态下的俯视图。[0029] 图4A是以往例的微芯片中通过毛细管现象使液体先于主流流动的状况的、取下盖的状态下的俯视图。[0030] 图4B是以往例的微芯片中通过毛细管现象使液体先于主流流动的状况的、取下盖的状态下的俯视图。[0031] 图4C是以往例的微芯片中通过毛细管现象使液体先于主流流动的状况的、取下盖的状态下的俯视图。[〇〇32]图4D是以往例的微芯片中通过毛细管现象使液体先于主流流动的状况的、取下盖的状态下的俯视图。[0033] 图5A是在第1实施方式的微芯片中液体流动的状况的、取下盖的状态下的俯视图。[0034] 图5B是在第1实施方式的微芯片中液体流动的状况的、取下盖的状态下的俯视图。[0035] 图5C是在第1实施方式的微芯片中液体流动的状况的、取下盖的状态下的俯视图。[0036] 图f5D是在第1实施方式的微芯片中液体流动的状况的、取下盖的状态下的俯视图。[〇〇37]图5E是在第1实施方式的微芯片中液体流动的状况的、取下盖的状态下的俯视图。[〇〇38]图5F是在第1实施方式的微芯片中液体流动的状况的、取下盖的状态下的俯视图。[0039] 图6A是表示使用以往例即比较例涉及的微芯片进行模拟实验时的微芯片的槽的形状的俯视图。[0040] 图6B是使用以往例即比较例涉及的微芯片进行模拟实验时的液体的流动状况的说明图。[0041] 图6C是使用以往例即比较例涉及的微芯片进行模拟实验时的液体的流动状况的说明图。[0042] 图6D是使用以往例即比较例涉及的微芯片进行模拟实验时的液体的流动状况的说明图。[0043] 图6E是使用以往例即比较例涉及的微芯片进行模拟实验时的液体的流动状况的说明图。[0044] 图6F是使用以往例即比较例涉及的微芯片进行模拟实验时的液体的流动状况的说明图。[0045] 图6G是使用以往例即比较例涉及的微芯片进行模拟实验时的液体的流动状况的说明图。[0046] 图7A是表示使用第1实施例涉及的微芯片进行模拟实验时的微芯片的槽的形状的俯视图。[0047] 图7B是使用第1实施例涉及的微芯片进行模拟实验时的液体的流动状况的说明图。[〇〇48]图7C是使用第1实施例涉及的微芯片进行模拟实验时的液体的流动状况的说明图。[〇〇49]图7D是使用第1实施例涉及的微芯片进行模拟实验时的液体的流动状况的说明图。[0050] 图7E是使用第1实施例涉及的微芯片进行模拟实验时的液体的流动状况的说明图。[0051] 图7F是使用第1实施例涉及的微芯片进行模拟实验时的液体的流动状况的说明图。[〇〇52]图7G是使用第1实施例涉及的微芯片进行模拟实验时的液体的流动状况的说明图。[〇〇53]图8A是本发明的第2实施方式中的微芯片的腔室的截面侧视图。[0054] 图8B是本发明的第2实施方式中的微芯片的取下盖的状态下的俯视图。[0055] 图8C是本发明的第2实施方式中的微芯片的盖的截面侧视图。[〇〇56]图8D是本发明的第2实施方式中的微芯片的盖的立体俯视图。[0057] 图9是本发明的实施方式的变形例中的微芯片的取下盖的状态下的俯视图。[0058] 标号说明[0059] 1基体[0060] 2盖[〇〇61]2a盖的内侧面[〇〇62]2c盖中心对应位置[0063] 3槽[0064] 3b后端壁[0065] 4膜[0066] 4a、4a-l、4a-2、4a-3、4a_4膜部[0067] 4b、4b-l、4b-2、4b-3、4b-4、4b-5贯通槽[〇〇68]4c槽以外的与基体接触的部分[0069]4g狭缝[0070] 5、105液体[0071] 6、6B微芯片[0072] 7a液体入口[0073] 7b液体出口[0074] 7c液体出口的中心[0075] 8气泡[0076] 105a先行液[〇〇77] 105b主流液体[〇〇78] 105c外侧的先行液[〇〇79] 105d内侧的先行液具体实施方式[0080] 以下,基于附图对本发明涉及的实施方式进行详细说明。[0081] 以下,在参照附图对本发明中的实施方式进行详细说明之前,对本发明的各种技术方案进行说明。[0082] 根据本发明的第1技术方案,提供一种微型元件,所述微型元件具备:[0083] 作为微型元件主体的基体,其具有导入液体的液体入口和排出所述液体的液体出口,并具有所述液体从所述液体入口向所述液体出口流动的槽;[0084] 将所述基体的所述槽覆盖的盖;以及[0085] 与所述槽相对而在所述盖的内侧面固定的膜,[0086] 所述膜具有液体流动控制膜部,从所述基体的膜厚方向观察时,所述液体流动控制膜部在与所述液体的流动方向交叉的方向上具有与所述槽相同的宽度,[0087] 所述液体流动控制膜部在所述槽中露出而配置,[0088] 所述液体流动控制膜部是圆弧形状的弯曲的带状,具有以与所述槽的所述液体出口的中心相对应的所述盖的中心对应位置为中心的半径,[0089] 所述液体流动控制膜部在所述槽内的所述液体的流动方向上,位于所述盖的所述内侧面中的露出面之后,[0090] 所述液体流动控制膜部具有比所述盖的所述内侧面中的所述露出面的接触角小的接触角。[0091] 根据所述技术方案,即使在从液体入口充满槽内的液体的宽度方向的两侧的先行液最初先于主流液体向液体出口行进的状况下,也能够通过膜部发挥抑制力的作用而使液体的前端形状整齐,能够控制液体的行进和填充部位,能够抑制槽内的气泡残留。[〇〇92] 本发明的第2技术方案,根据第1技术方案所述的微型元件,所述液体流动控制膜部的所述接触角与所述盖的所述内侧面的所述露出面的所述接触角之差至少为20度。[〇〇93] 根据所述技术方案,如果液体流动控制膜部的所述接触角与所述盖的所述内侧面的所述露出面的所述接触角之差至少为20度,则能够基于接触角的差异而在不同材料的边界上相对于液体的流动方向,使通过接触角变大而产生的先行阻力回拉力切实地作用于液体,能够延缓由于毛细管现象而先行的液体的行进。[0094] 本发明的第3技术方案,根据第1或2技术方案所述的微型元件,所述液体流动控制膜部具有5nm以上且14wii以下的厚度。[〇〇95] 根据所述技术方案,如果液体流动控制膜部的厚度为5nm以上,则能够制造为均匀的膜。如果液体流动控制膜部的厚度为14mi以下,则能够不用使液体接触盖的内侧面,发挥由接触角之差带来的抑制控制功能。[0096] 本发明的第4技术方案,根据第1〜3的任一技术方案所述的微型元件,所述液体流动控制膜部是接近所述液体出口的圆弧带状的膜部,[0097] 所述液体出口与所述圆弧带状的膜部的最短距离,大于与所述液体出口的附近的所述槽的弯曲的后端壁的最短距离。[0098] 根据所述技术方案,能够在液体的前端形状通过接近液体出口的圆弧带状的膜部而切实地对齐后,使液体朝向液体出口而切实地绕到槽的弯曲的后端壁,排出槽内的全部气泡。[0099] 本发明的第5技术方案,根据第1〜4的任一技术方案所述的微型元件,所述液体流动控制膜部在所述液体的流动方向上具有狭缝。[0100] 根据所述技术方案,在狭缝的部分能够实现与所述液体流动控制膜部同样的效果。[〇1〇1]以下,对于本发明,利用其实施方式并参照附图进行具体说明。[0102] 第1实施方式[0103] 图1A和图1B表示本发明的第1实施方式中的微芯片的腔室的截面侧视图、和在取下盖的状态下从上方观察的俯视图。图1C是图1B的1C-1C线的切割端视图。图1D是图1B的1D-1D线的切割端视图。[〇1〇4]图1E和图1F表示本发明的第1实施方式中的将微芯片的腔室覆盖的盖的截面侧视图和膜的俯视图。[0105] 如图1A〜图1F所示,微芯片6构成为具备基体1、盖2和膜部换言之为液体流动控制月旲部4a_l、4a_2、4a_3、4a_4。[0106] 液体流动控制膜部也可以被称为带。更具体而言,在图1A〜图1F中所示的膜部4a-1、膜部4a-2、膜部4a-3和膜部4a-4也可以分别被称为第1带、第2带、第3带和第4带。[0107] 基体1例如由硅等构成。例如,在长方形板状的基体1的上面,沿长度方向形成有作为腔室或流路发挥作用的槽3。槽3的一例如图1B所示,是在中央部延伸存在的长方形的凹部。关于槽3,并不限制于该形状,可以为任意形状。在槽3的一侧的弯曲端部附近例如图1A和图1B的左端附近贯通有液体入口7a。以下,液体入口7a可以简称为“入口7a”。在槽3的另一侧的弯曲端部附近例如图1A和图1B的右端附近贯通有液体出口7b。以下,液体出口7b可以简称为“出口7b”。作为一例,槽3的深度是一定的。液体出口7b的宽度比槽3的宽度小,因此如果液体5在液体出口7b的附近迂回,有容易残留气泡8的倾向。本说明书记载的实施方式等用于消除该倾向。[0108] 关于槽3的两端部,即液体入口7a的附近的前端壁例如图1B中为圆弧状的左端壁3a弯曲,液体出口7b的附近的后端壁例如图1B中为圆弧状的右端壁3b也弯曲。[0109] 盖2重叠贴合固定在基体1上,包含槽3的基体1的上面的整个面由盖2覆盖。盖2例如由长方形板状的玻璃构成。像这样,盖2与板状的基体1相对而配置。由此,该微芯片6中,成为液体5除了在形成于槽3与盖2的下面即内侧面2a之间的空间内从液体入口7a向液体出口7b流动以外,液体5不会向微芯片外部流出的封闭的结构。换言之,盖1具有内侧面2a和外侧面。内侧面2a与板状的基体1即槽3的底面相对。[0110]膜4以与槽3相对的方式固定在盖2的内侧面2a,并具有多个膜部4a。膜4由与构成盖2的内侧面2a的材料不同的材料构成。作为膜的材料,可以是氮化物、氧化物或有机物。作为氮化物,例如有a_SiN:H、Si3N4或S1N,氧化物例如有Sn02、ZnO、In2〇3、Fe3〇4、Fe2〇3、?62!103、附0、:110、:1120、1102、3102、111203或恥3,作为有机膜,例如有聚四氟乙烯啊?£、聚偏二氟乙烯PVDF、聚丙烯PP、聚乙烯PE或聚砜PS。作为一例,如图1B和图1F所示,在膜4上,相对于与槽3对应的大致椭圆形状的贯通槽4b、形成有在槽的宽度方向上延伸存在的圆环状或圆弧带状的薄的膜部4a即4a_l、4a_2、4a_3、4a_4。各膜部4a-l、4a_2、4a_3、4a_4的曲率中心为液体出口7b的中心。由膜部4a-l、4a-2、4a-3、4a-4形成的贯通槽4b即牝-1、413-2、4b-3、4b-4、4b-5中,盖2的内侧面2a成为露出面露出。由此,液体流动控制膜部4a在液体的流动方向上,位于盖2的内侧面2a中的露出面之后。各贯通槽4b和各膜部4a的各个弯曲部分上的切线方向,分别成为与液体5流动的方向交叉的方向。该图1C中,以图1B的例如穿过膜部4a-4的弯曲的切割线1C-1C在纵向上切割,示出了膜部4a-4向槽3内突出,液体5在槽3内能够接触膜部4a-4的状态。与此相对,图1D是图1B的1D-1D线的切割端视图。该图1D中,没有膜部4a,以穿过贯通槽4b的切割线1D-1D在纵向上切割,示出了在槽3内没有膜部4a,液体5在槽3内能够接触盖2的内侧面2a的露出面的状态。[〇111]像这样,各带4a以从内侧面2a突出的方式设置于内侧面2a。各带4a具有与板状的基体1的厚度方向平行的厚度。各带4a具有圆环或劣弧的形状。劣弧意味着具有小于180度的中心角的圆弧。[〇112]为了不使由下述的接触角0之差带来的抑制控制功能降低,膜部4a和贯通槽4b的长度图1B的上下方向的尺寸与槽3的宽度图1B的上下方向的尺寸相同。更具体而言,从基体1的膜厚方向观察,各膜部4a在与液体5的流动方向交叉的方向上具有与槽3同样的宽度。[〇113]另外,膜部4a具有5nm以上且14wii以下的厚度。具有小于5nm的厚度的膜4,难以制造为均匀的膜。具有大于14mi的厚度的膜4,液体不会接触到盖2的内侧面2a的露出面,由下述的接触角9之差带来的抑制控制功能降低。[0114]另外,液体出口7b与最接近液体出口7b的圆弧带状的膜部4a_2的最短距离D1,大于与液体出口7b的附近的槽3的弯曲的后端壁3b的最短距离D2。像这样,后端壁3b位于槽3的出口7b侧的一端。第1带4a的圆弧的半径4_1R即距离D2大于出口7和后端壁3之间的距离D1。通过这样构成,能够避免在液体5到达圆弧带状的膜部4a-2而使液体5的前端形状对齐之前,液体5开始进入液体出口7b。换言之,这样构成能够在液体5的前端形状由最接近液体出口7b的圆弧带状的膜部4a-2切实地对齐后,使液体5朝向液体出口7b切实地绕到槽3的弯曲的后端壁3b,将槽3内的气泡8全部排出。[〇115]另外,膜部4a的宽度设为大于槽3的深度、且为液体入口7a与液体出口7b之间的二分之一以下的宽度。作为具体例,膜部4a的宽度设为1〜5mm。其理由是由于通过表面张力,液体从槽3倾斜迟缓而接触盖6,因此为了成为比深度方向厚而具有富裕的宽度,最低设为1mm。另一方面,为了将多个圆弧图案化,需要以一定程度的宽度抑制,因此最大宽度设为5mm〇[0116] 作为在盖2的内侧面2a配置膜部4a的方法,作为一例可以采用以下这样的方法。首先,在盖2的内侧面2a的整个面上,以例如15wii的厚度制成接触角与盖2的内侧面2a的露出面不同的膜4。然后,膜4通过光刻工序等进行图案化,留下圆弧带状、换言之为圆环状或圆弧带状的薄的膜部4a。该图案化形状如图1B所示,形成为以与液体出口7b的中心7c对应的盖2的中心对应位置2c为中心的圆环状或圆弧带状。[0117] 图1B和图1F中,距离中心对应位置2c半径最小的圆环状的膜部由4a_l表示,其半径由4-1R表示。最接近液体出口7b的圆环状的膜部4a-l的半径或曲率半径小于其它膜部4a_2〜4a_4的半径或曲率半径。并且,距离中心对应位置2c半径稍大一些的圆弧状的膜部由4a-2表示,其半径由4-2R表示。在图1B和图1F中还示出了以膜部4a-3、膜部4a-4依次半径增大为4-3R、4-4R的方式图案化。在此,在基体1与盖2的位置关系上,将基体1侧设为下方向,将盖2侧设为上方向。另外,在实际的实验中,各膜部4a_l、4a_2、4a_3、4a_4的圆环状或圆弧带状的宽度半径方向的尺寸例如以1mm作成。另外,在图1F中,残留有除了槽3以外的与基体1接触的部分4c的膜。[〇118]像这样,各带4a具有圆环或劣弧的形状,它们的劣弧的中心位于出口7b。换言之,在俯视观察时,劣弧的中心与出口7b严格而言为出口7b的中心一致。因此,第1带4a-l、第2带4a-2、第3带4a-3和第4带4a-4呈同心状。具有圆环的形状的第1带4a-l的半径4-1R小于第2带4a-2的半径4-2R。同样地,第2带4a-l的半径4-2R小于第3带4a-3的半径4-3R。第3带4a-3的半径4-3R小于第4带4a-4的半径4-4R。[0119]槽3的形状不限于圆形,可根据用途而成为椭圆、三角或四角等各种形状,但进行图案化后的膜部4a,优选以相对于液体出口7b的中心7c,半径缓缓增大的方式具有圆形。但是,如果圆形的半径过大,则有时膜部4a的圆环形状变得比槽3大,不会包含在槽3内。该情况下,不以圆环形状、而是以圆弧带状图案化。成为圆弧带状的理由,是由于膜部4a的各个位置以相对于液体出口7b的中心7c相等的距离配置,相对于液体出口7b,能够与液体5的前端的形状相等地发挥抑制力的作用,对齐为圆弧形状。像这样,如果液体5的前端的形状对齐为圆弧形状,则在液体5到达液体出口7b的附近时,液体5能够从两侧绕到液体出口7b后方的弯曲的后端壁3b,能够将槽3内的气泡8利用液体5包裹,从而顺利地从液体出口7b排出。膜4残留在与槽3相对的膜部4a之间的贯通槽4b以外,基体1和盖2以夹持膜4的形态接合,构成微芯片6。[〇12〇]由此,在槽3内流动的液体5从液体入口7a,以贯通槽4b_5的盖2的内侧面2a的露出面、膜部4a-4、贯通槽4b-4的盖2的内侧面2a的露出面、膜部4a-3、贯通槽4b-3的盖2的内侧面2a的露出面、膜部4a_2、贯通槽4b_2的盖2的内侧面2a的露出面、膜部4a_l、贯通槽4b_l的盖2的内侧面2a的露出面的顺序,向液体出口7b—边接触不同的材料一边流动。[〇121]再者,膜部4a和用于使盖2的内侧面2a的露出面露出的贯通槽4b至少各配置一个即可,因为这仅减少与接触角不同的膜部4a接触的次数。作为膜部4a,既可以至少仅设为圆环状的膜部4a_l,也可以取而代之仅设为圆弧带状的膜部4a_2。在设为1个的情况下,仅设为圆环状的膜部4a_l比仅设为圆弧带状的膜部4a_2的效果好,这是由于即使存在由来自后端壁3b的液体5的弹回导致的不确定因素,最终气泡残留也会受到抑制。[0122]盖2的内侧面2a的材料与膜4不同,因此构成为盖2的内侧面2a中的露出面具有比膜4的膜部4a的接触角01大的接触角02。在此,关于像这样由接触角01、02不同的材料构成的理由,以下进行详细描述。[0123] 首先,如图2A所示,接触角0是液体21的液滴21a与固体表面22所形成的角度0。根据杨氏Young模量公式,[0124] 固体S的表面张力ysv=固体S和液体L的表面张力ysl+液体L的表面张力ylvXCOS0[0125] 成立。[0126] 因此,如图2B所示,液体L在接触角9不同的材料上通过的情况下,液体L从接触角9a小的材料的第1固体Sa移到接触角0b大的材料的第2固体Sb时,液体L受到的表面张力仅是在接触角9b大的材料上发挥作用的表面张力。即,如以下这样考虑。[0127] 首先,在第1固体Sal,[0128] 在第1固体Sa与周围的气体的界面上发挥作用的表面张力ysva=在第1固体Sa与液体L的界面上发挥作用的表面张力Ysua+在第1固体Sa中液体L与周围的气体的界面上发挥作用的表面张力TLVaXcos9[0129] 成立参照图2B的右视图。[0130] 接着,在第2固体Sb上,[0131] 在第2固体Sb与周围的气体的界面上发挥作用的表面张力ysvW=在第2固体Sb与液体L的界面上发挥作用的表面张力ysub+在第2固体Sb中液体L与周围的气体的界面上发挥作用的表面张力TLVbXcos9[0132] 成立参照图2B的左视图。[0133] 另一方面,在第1固体Sa与第2固体Sb的边界上,[0134] 在边界部分的第1固体Sa与周围的气体的界面上发挥作用的表面张力ysva〈在第1固体Sa与液体L的界面上发挥作用的表面张力ysub+在第2固体Sb中液体L与周围的气体的界面上发挥作用的表面张力yLVaXCOS0[0135] 成立参照图2B的中央图。[0136] S卩,液体L在接触角0a、0b不同的材料的第1和第2固体Sa、Sb上通过的情况下,从接触角9a小的材料的第1固体Sa移到接触角0b大的材料的第2固体Sb时,液体L受到的表面张力不会受到接触角9a小的材料的第1固体Sa上的表面张力yLva,而是仅受到接触角9b大的材料的第2固体Sb上的表面张力ylvb。于是,在接触角0a、0b不同的材料的第1和第2固体Sa、Sb的边界,作为与液体L的流动方向相反方向的力yLvw,大于在此之前通过的材料即第1固体Sa上的与液体L的流动方向相反方向的力ylvw,液体L受到第2固体Sb上的表面张力yLVb,从而先行阻力Fd、换言之为抑制力作用于液体L。在此,先行阻力Fd为[0137] Fd=ySLb+yLVaXc〇s9-ySVa。[0138] 该先行阻力Fd作为由接触角9a、0b之差带来的抑制控制功能,作用于液体L,结果使液体L的先行受到抑制。[0139] 具体而言,首先,从图1A和图1F的左端附近的液体入口7a向槽3内导入的液体5,最初与贯通槽4b_5的盖2的内侧面2a的露出面接触。[〇14〇] 接着,液体5与盖2的内侧面2a的露出面接触并且在槽3内开始向液体出口7b流动时,液体5会在图1A和图1F的中央附近接触到与贯通槽4b-5相邻的膜部4a-4。[0141] 然后,液体5在槽3内进一步流动时,液体5会接触到与膜部4a-4相邻的贯通槽4b-4的盖2的内侧面2a的露出面。[0142] 在此,盖2的内侧面2a的露出面的接触角0b大于膜部4a的接触角0a,因此与膜部4a接触而流动的液体5将要接触到盖2的内侧面2a的露出面时,如上所述先行阻力Fd在膜部4a与盖2的内侧面2a的露出面的边界作为抑制力发挥作用。即,由接触角0a、0b之差带来的抑制控制功能会作用于液体5。其结果,液体5的先行受到抑制,液体5会在主流液体5b的前端与先行液5a的前端的距离与后述的以往例相比小的状态下流动。[0143] 像这样,与膜4的膜部4a和盖2的内侧面2a的露出面交替接触,并且液体5在槽3内从液体入口7a向液体出口7b流动时,每次与液体5接触的材料不同,先行阻力Fd作为由接触角9a、0b之差带来的抑制控制功能作用于液体5,从而使液体5的先行被有效地抑制。其结果,在输送液体5时,能够以稳定的液量进行供给,详细理由会在后面描述。[0144] 如上所述,各带4a的接触角0a小于没有设置带4a的部分的内侧面2a的接触角0b。[0145] 再者,关于接触角之差,如果考虑到膜部表面的污垢,则至少为20度,这样的话相对于液体5能够产生抑制力。[0146] 仳较例[0147] 图3A和图3B中示出了对于作为比较例,在没有配置膜4的以往例的微芯片116中发生毛细管现象的问题的情况进行说明的截面侧视图、和取下了盖102的状态下的俯视图。[0148] 该比较例的微芯片116,使用栗等将液体105从入口107a注入槽103的情况下,如图4A〜图4D所示,在盖102与具有槽103的基体101之间存在微小的间隙,因此发生毛细管现象,产生液体105的先行液105a。再者,关于液体105,为了明确而在之后的图中由黑色表示。具体而言,如图4A〜图4B所示,在槽103的宽度方向的两侧的边角部且基体101与盖102贴合的部分形成的微小的间隙中,通过毛细管现象,在沿着槽103的边界部的液体流动方向上,液体105的一部分即一对细的先行液105a先于主流液体105b流动。并且,如图4C所示,该液体105的一对先行液105a之中的任一先行液105a先于主流液体105b从一侧到达液体出口7b的后方的弯曲的后端壁103b,在液体出口7b的周围迂回,并且主流液体105b与该先行液105a—起从一侧例如图4C中为上侧靠近液体出口7b,进入液体出口7b内。因此,如图4D所示,液体出口7b的附近的气泡108被推到液体出口7b的另一侧例如图4C中为下侧,即使主流液体105b到达液体出口7b,所有的气泡108也不会进入液体出口7b,被推挤的一部分气泡108残留在液体出口7b的附近。其结果,由于气泡108的残留,在输送液体105时,无法以稳定的液量进行供给。[0149] 对于这样的先行液105a,在第1实施方式涉及的微芯片6中,如以下说明的那样使抑制力发挥作用,能够进行抑制从而消除气泡的残留。[〇15〇]第1实施方式的第1实施例[0151] 作为第1实施方式的第1实施例实际作成的微芯片6B,液体入口7a和液体出口7b分别接近槽3的壁面而配置,并且省略膜部4a-l,除此以外与图1A〜图1F所示的结构是同样的。[〇152] 根据这样的结构,如图5A〜图5B所示,在槽3的宽度方向的两侧的边角部且基体1与盖2贴合的部分形成的微小的间隙中,通过毛细管现象,在沿着槽3的拐角部的液体流动方向上,液体5的一部分即细的先行液5a将要先于主流液体5b流动。[0153] 但是,如图5C所示,该液体5的先行液5a通过圆弧带状的膜部4a_4、膜部4a_3、膜部4a-2,如以上说明的那样使抑制力发挥作用,先行液5a几乎消失,主流液体5b的前端形状一边成为环绕液体出口7b的中心7c的同心圆的圆弧状,一边向液体出口7b流动。[0154] 其结果,如图5D〜图5F所示,主流液体5b的两侧同时到达液体出口7b的后方的弯曲的后端壁3b,在液体出口7b的周围,沿着弯曲的后端壁3b从两侧绕回。于是,能够以液体出口7b为中心,利用液体5包裹残留在槽3内的空气8,将空气8顺利地送入液体出口7b内。这样,气泡8不会残留于槽3内,能够将槽3内的空气等的气泡8的全部,利用液体5而集中于液体出口7b的周围之后,送入液体出口7b内。其结果,槽3内不存在气泡8,因此在输送液体5时,能够以稳定的液量进行供给。[0155][0156] 为了进行第1实施例的效果确认,通过基于粒子法的热流体分析软件“Particleworks”:7°口 •:7卜夕工7株式会社的流体分析软件的产品名称作成第1实施例和没有形成膜4的比较例,进行了模拟实验。[0157] 进行了确认,模拟实验的比较例中使用的结构是与图3A和图3B同样的结构,第1实施例中使用的结构是与图1A〜图1F同样的结构。[0158] 在基体1上挖的槽103、3,宽5mm,槽内最大部分的宽度为15mm,深度为0.28mm,在槽3内的最小尺寸即宽5mm的边即图3B的槽3的两端的弯曲的边上附有半径为2.5mm的R,供液体1〇5、5出入的液体入口和液体出口107a、107b、7a、7b的各孔的大小设为半径0.1mm的孔,液体入口和液体出口107a、107b、7a、7b的中心间隔为13mm。另外,设置成利用盖102、2将在基体1〇1、1上挖的槽1〇3、3覆盖。[0159] 在以往的方法中,盖102的表面上不进彳丁任何制膜。而在第1实施例中,在盖2上形成接触角与盖2的内侧面2a的露出面不同的5wii的膜4,并且进行图案化以使该膜4具有多个4a。以该比较例和第1实施例这两种结构进行了比较实验。[0160] 关于第1实施例的结构,与盖2的接触角不同的膜4的膜部4a被图案化而形成,各膜部4a形成为以中心对应位置2c为中心的圆环状或圆弧带状,该圆环状和圆弧带状的膜部4a的宽度半径方向的尺寸为1.〇mm,膜厚为5mi,槽3以外的与基体1接触的部分4c的膜4保留。[0161] 从液体入口107a、7a流入的液体105、5,以流量为11.9此秒注入,假设实际使用的材料为聚碳酸酯树脂,则在基体1上挖的槽3的接触角为75度,盖2的接触角也为75度,假设制成了非晶硅等的膜,则制成的膜4的接触角构成为27度的接触角,由此进行了模拟实验。[0162] [0163] 图6A〜图6G中示出了液体105进入作为以往结构的微芯片116的槽103的模拟结果。[0164] 在图6A中示出了将液体105从液体入口107a注入槽103之前的状态。以图6B〜图6G的顺序示出液体105从液体入口107a被注入,随时间经过液体105充满槽103的情形。图6B〜图6G中分别示出了从上方观察槽103的俯视图a、和从侧面观察的截面侧视图b。如图6B〜图6D所示,液体105的两侧的前端部分即一对先行液105a之中一侧的先行液105a比另一侧的先行液l〇5a更快流动,使得进入速度不均匀地被注入。并且,如图6E所示,在槽103的后端壁103b,观察到液体105的先行液105a由于毛细管现象而以在液体出口107b的周围迂回的方式行进。图6F中,观察到液体105的一侧的例如图6F中为上侧的先行液105a以比另一侧的例如图6F中为下侧的先行液105a先接近液体出口107b的方式行进的情形。如果该状态发展,则如图6G所示,会使气泡108残留在液体出口107b的一侧例如图6F中为下侧,液体105的主流液体105b到达液体出口107b,而该气泡108残留在槽103内。[0165] 另一方面,在图7A〜图7G中示出了液体5进入作为第1实施例的微芯片6的槽3的模拟结果。[0166] 在图7A中示出将液体5从液体入口107a注入槽3之前的状态。以图7B〜图7G的顺序示出液体5从液体入口107a被注入,随时间经过液体5充满槽3的情形。图7B〜图7G中分别示出了从上方观察槽3的俯视图a、和从侧面观察的截面侧视图b。[0167] 如图7B所示,由于毛细管现象,液体5的两侧的前端部分即一对先行液5a之中一侧的先行液5a比另一侧的先行液5a更快流动,开始不均匀地行进。[0168] 但是,如图7C所示,先行液5a与接触角不同的膜4的最大的圆弧带状的膜部4a_4接触时,速度受到抑制,主流液体5b的前端被暂时调整为圆弧带状的膜部4a-4的图案化的圆弧形状。[0169] 进而,继续注入液体5,如图7D所示,主流液体5b的前端在接触角不同的膜4的第二大的圆弧带状的膜部4a_3进一步被暂时调整。[〇17〇]然后,如图7E所示,主流液体5b的前端在接触角不同的膜4的第三大的圆弧带状的膜部4a_2再次被暂时调整。[〇171]像这样,如图7B〜图7E所示,通过接触角不同的膜4的多个膜部4a被盖2图案化,可得到对行进的液体5的先行液5a的行进进行控制的结果。[〇172]然后,如图7F所示,两侧的先行液5a不会先行,主流液体5b的前端以均匀整齐的状态向液体出口7b行进。[0173] 最后,如图7G所示,主流液体5b的两侧同时到达液体出口7b的后方的弯曲的后端壁3b,在液体出口7b的周围,沿着弯曲的后端壁3b从两侧绕回。其结果,以液体出口7b为中心,利用液体5包裹残留在槽3内的空气8,将空气8顺利地送入液体出口7b内。由此,在槽3内不残留气泡8,将槽3内的空气等的气泡8的全部,利用液体5而集中于液体出口7b的周围之后,送入液体出口7b内。[0174] 实验的结果,根据第1实施例,在槽3内不存在气泡8,因此能够确认在液体5充满槽3时,以稳定的液量进行供给。即,能够确认在盖2上制成接触角不同的膜4后,形成圆弧带状的膜部4a,由此能够高效地将液体5排出到液体出口7b,不使气泡8残留在槽3之中。[0175] 根据所述第1实施方式,通过将具有以槽3的液体出口7b的中心为中心的半径的圆弧形状的弯曲的带状的膜部4a和盖内侧面2交替配置,并且使彼此的接触角不同,能够在输送液体5时,使抑制力对先行液5a发挥作用,由此将液体出口7b的周围包围并且将槽3内的气泡8从液体出口7b排出。其结果,能够以稳定的液量进行供给。[0176] 由此,例如,即使在从液体入口7a充满槽3内的液体5的宽度方向的两侧的先行液5a最初先于主流液体5a向液体出口7b行进的状况下,也能够通过膜部4a使抑制力发挥作用,调整液体5的前端形状,能够一边大致均匀地保持从液体5的前端到液体出口7b的距离,一边充满槽3内。通过直到液体5的液体出口7b附近为止配置膜部4a,能够控制液体5的行进和填充部位,抑制槽3内的气泡8残留。[0177]第2实施方式[〇178]图8A〜图8D是本发明的第2实施方式中的微芯片6B的截面侧视图、从上方观察的俯视图、盖的截面侧视图、和从上方观察盖的俯视图。[0179]如图8A〜图8D所示,微芯片6B与第1实施方式的微芯片6不同的点在于,多个膜部不作为膜形成,而是多个膜部分别单独地固定在盖2的内侧面2a。[〇18〇]具体而言,在盖2的内侧面2a上制成与盖2的内侧面2a的露出面接触角不同的膜4,然后,膜4通过光刻工序等进行图案化,仅留有圆弧带状、换言之为圆环状或圆弧带状的薄的膜部4a。该图案化形状如图8B和图8D所示,形成为以与液体出口7b的中心相对应的盖2的中心对应位置2c为中心的圆环状或圆弧带状。[0181]图8B和图8D中,距离中心对应位置2c半径最小的圆环状的膜部由4a-ll表示,其半径由4-11R表示。并且,以距离中心对应位置2c稍大的半径描绘成圆弧带状而图案化的膜部由4a-l2表示,其半径由4-12R表示。在图8B和图8D中还示出了以膜部4a-l3、膜部4a-14依次半径增大为4-13R、4-14R的方式进行图案化。在此,基体1与盖2的位置关系上,将基体1侧设为下方向、将盖2侧设为上方向。另外,在实际的实验中,各膜部4a_2、4a_3、4a_4的圆弧的宽度半径方向的尺寸以1.0mm作成。在盖2上形成的膜4,除了与槽3对应的部分的膜部4a以夕卜,其余通过图案化除去,基体1与盖2直接接合,构成了微芯片6B。在盖2上图案化的膜部不与基体1接触,因此不产生高低差,基体1与盖2直接接合,能得到防止被导入到槽3的液体5漏出的效果。[0182] 但是,实际上与在实验中使用的盖相比,具备如图1F所示的多个同心圆状的圆弧的膜部4a-2、4a-3、4a_4的盖2更容易制造。[0183] 再者,本发明并不限定于所述实施方式,能够以其它各种方式实施。[0184] 在本说明书和权利要求的范围中,膜部4a的圆弧形状意味着在膜部4a的液体流动的方向的端缘的各位置之中,至少中央和两端部共计3点与液体出口7b的中心7c为等距离,并且穿过该3点的曲线或多边形的边状的曲折直线。[0185] 例如,如图9所示,各膜部不限于连续地延伸存在,也可以由沿着液体5的流动方向的狭缝分割。即,在先行液5a难以接触的中央部分等,可以形成宽度为膜部4a的厚度左右的狭缝4g。根据这样的结构,结合槽3的形状,在局部流动缓慢的部分形成狭缝4g,由此形成局部流动快速的部分,具有能够消除在局部流动缓慢的部分的不良情况的效果。如图9所示,狭缝4g的长度方向可以与槽3的长度方向即液体的流动方向平行。[0186] 再者,盖内侧面2a的露出面与膜部4a的接触角之差小的情况下,可以通过增加膜部4a的个数而增大抑制效果。[0187] 再者,通过将所述各种实施方式或变形例之中的任意的实施方式或变形例适当组合,能够发挥各自所具有的效果。另外,能够将实施方式彼此组合,将实施例彼此组合,以及将实施方式与实施例组合,并且也能够将不同的实施方式或实施例之中的特征彼此组合。[0188] 产业可利用性[0189] 本发明涉及的微型元件,即使在从液体入口充满槽内的液体的宽度方向的两侧的先行液最初先于主流液体向液体出口行进的状况下,也能够通过膜部发挥抑制力的作用而使液体的前端形状整齐,能够控制液体的行进和填充部位,能够抑制槽内的气泡残留,作为每秒钟处理几yL〜几百yL的液体的微型器件或微芯片等微型元件等是有用的。[0190]以下,列举根据上述的公开导出的发明。[0191]项目 I[0192] —种微芯片,具备:[0193] 板状的基体,其具备入口、出口、液体从所述入口向所述出口流动的槽;和[0194] 盖,其与所述板状的基体相对而配置,[0195] 所述盖具有内侧面和外侧面,[0196] 所述盖的所述内侧面与所述板状的基体相对,[0197] 在所述盖的所述内侧面,以从所述内侧面向所述槽的底面突出的方式设有具有与所述板状的基体的厚度方向平行的厚度的第I带,[0198] 所述第I带具有劣弧或圆环的形状,[0199] 所述第I带的劣弧或圆环的中心位于所述出口,并且[0200] 所述第I带具有比没有设置所述第I带的部分的所述盖的内侧面小的接触角。[0201]项目 2[0202] 根据项目I所述的微芯片,[0203] 在所述盖的所述内侧面还具备第2带,[0204] 所述第2带具有劣弧或圆环的形状,[0205] 所述第2带的劣弧或圆环的中心位于所述出口,[0206] 所述第2带具有比没有设置所述第I带和第2带这两者的部分的所述盖的内侧面的接触角度小的接触角,并且[0207] 所述第2带的劣弧或圆环具有比所述第I带的劣弧或圆环大的半径。[0208]项目 3[0209] 根据项目I所述的微芯片,[0210] 所述第I带的接触角与没有设置所述带的部分的所述盖的内侧面的接触角之差为20度以上。[0211]项目 4[0212] 根据项目I所述的微芯片,[0213] 所述第I带具有5纳米以上且14微米以下的厚度。[0214]项目 5[0215] 根据项目I所述的微芯片,[0216] 所述第I带具有狭缝,并且[0217] 所述狭缝的长度方向平行于所述槽的长度方向。[0218]项目 6[0219] 根据项目I所述的微芯片,[0220] 后端壁位于所述槽的所述出口侧的一端,并且[0221] 所述第I带的劣弧或圆环的半径大于所述出口与所述后端壁之间的距离。

权利要求:1.一种微芯片,具备:板状的基体,其具备入口、出口、液体从所述入口向所述出口流动的槽;和盖,其与所述板状的基体相对而配置,所述盖具有内侧面和外侧面,所述盖的所述内侧面与所述板状的基体相对,在所述盖的所述内侧面,以从所述内侧面向所述槽的底面突出的方式设有具有与所述板状的基体的厚度方向平行的厚度的第1带,所述第1带具有劣弧或圆环的形状,所述第1带的劣弧或圆环的中心位于所述出口,并且所述第1带具有比没有设置所述第1带的部分的所述盖的内侧面小的接触角。2.根据权利要求1所述的微芯片,在所述盖的所述内侧面还具备第2带,所述第2带具有劣弧或圆环的形状,所述第2带的劣弧或圆环的中心位于所述出口,所述第2带具有比没有设置所述第1带和第2带这两者的部分的所述盖的内侧面的接触角度小的接触角,并且所述第2带的劣弧或圆环具有比所述第1带的劣弧或圆环大的半径。3.根据权利要求1所述的微芯片,所述第1带的接触角与没有设置所述带的部分的所述盖的内侧面的接触角之差为20度以上。4.根据权利要求1所述的微芯片,所述第1带具有5纳米以上且14微米以下的厚度。5.根据权利要求1所述的微芯片,所述第1带具有狭缝,并且所述狭缝的长度方向平行于所述槽的长度方向。6.根据权利要求1所述的微芯片,后端壁位于所述槽的所述出口侧的一端,并且所述第1带的劣弧或圆环的半径大于所述出口与所述后端壁之间的距离。

百度查询: 松下知识产权经营株式会社 微芯片

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。