买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】一种发动机主轴疲劳试验载荷确定方法_中国航发四川燃气涡轮研究院_201811559464.0 

申请/专利权人:中国航发四川燃气涡轮研究院

申请日:2018-12-20

公开(公告)日:2020-10-20

公开(公告)号:CN109520717B

主分类号:G01M13/00(20190101)

分类号:G01M13/00(20190101)

优先权:

专利状态码:有效-授权

法律状态:2020.10.20#授权;2019.04.19#实质审查的生效;2019.03.26#公开

摘要:本发明提供的一种针对发动机轴类零件疲劳试验载荷的确定方法。通过将旋转弯矩载荷等效转换为振动扭矩载荷,解决轴类疲劳试验中旋转弯矩载荷不能在普通疲劳试验机上加载的问题,使得可以使用普通疲劳试验机开展小尺寸的轴类零件疲劳试验,不需要再针对被试轴尺寸进行专门的轴类疲劳试验器设计、重新建设或大量改造,从而降低轴类疲劳试验的成本,也降低了试验载荷加载难度,提高了载荷加载精度。

主权项:1.一种发动机主轴疲劳试验载荷确定方法,其特征在于:所述方法包括:确定主轴的标准循环载荷;通过等效转换,将所述标准循环载荷转换为等效循环载荷;将所述等效循环载荷乘以对应的散度系数,得到试验载荷谱;所述确定主轴的标准循环载荷,具体包括:根据扭矩MT、振动扭矩ΔMT、轴向力P、旋转弯矩Mb确定主轴的标准循环载荷;所述通过等效转换,将所述标准循环载荷转换为等效循环载荷,具体包括:按照载荷作用的循环次数要求,将扭矩MT、轴向力P划分为低循环载荷,将振动扭矩ΔMT、旋转弯矩Mb划分为高循环载荷;分别计算主轴在所述低循环载荷和所述高循环载荷作用下的应力,得到主轴在所述低循环载荷峰值作用下的应力幅值σm和在所述高循环载荷作用下的应力幅值σa;使用Goodman曲线评估主轴在标准循环载荷下的高循环疲劳寿命储备α;选取等效振动扭矩ΔM′T,计算主轴在等效振动扭矩ΔM′T作用下寿命考核部位的应力,得到应力幅值σ′a;使用所述σ′a和允许的最大高循环应力σa,max按公式计算出等效振动扭矩ΔM′T、扭矩MT与轴向力P共同作用下的高循环疲劳寿命储备α′;通过调整等效振动扭矩ΔM′T值,使得寿命考核部位的高循环疲劳储备α′与α相当,则可确定出等效后的等效振动扭矩ΔM′T。

全文数据:一种发动机主轴疲劳试验载荷确定方法技术领域本发明属于发动机领域,涉及一种发动机主轴疲劳试验载荷确定方法。背景技术航空发动机轴类零件,是转子上起支持作用的零件,也是转子上传递扭矩功率的零件。发动机主轴是非常重要的承力件,在工作中承受包括主扭矩、轴向力和轴对称载荷的低循环疲劳载荷和包括陀螺力矩、振动扭矩、不平衡力等的高循环疲劳载荷同时作用。在发动机设计中,需要通过轴类疲劳试验对其寿命进行考核。工程上,主轴疲劳试验载荷的确定一般直接由标准循环载荷乘以散度系数作为试验载荷谱,即直接由轴向力、扭矩、振动扭矩和旋转弯矩等的标准循环载荷分别乘以对应的散度系数,得到轴向力、扭矩、振动扭矩和旋转弯矩等的标准循环载荷试验载荷谱。由于普通的疲劳试验机一般可同时加载轴向力、扭矩、振动扭矩载荷,不能实现旋转弯矩的加载,通过这种方法确定的试验载荷仅能在专用轴类疲劳试验器上进行试验加载。因此往往需要根据被试轴尺寸进行专门的轴类疲劳试验器设计、建设或大量改造,耗时长,成本高。且试验载荷种类多,加载要求复杂,加载精度和加载频率不高。发明内容本发明的目的是:提供一种对发动机轴类零件疲劳试验载荷的确定方法。通过对轴类零件的疲劳试验载荷进行等效转换,使得试验载荷能够模拟零件疲劳载荷,且可以使用常用的材料疲劳试验机加载,解决主轴疲劳试验仅能在专门轴类疲劳试验器上进行的问题。本方法确定的载荷也适用于使用轴类疲劳试验器进行的主轴疲劳试验。为解决上述技术问题,本发明的技术方案是:一种发动机主轴疲劳试验载荷确定方法,所述方法包括:确定主轴的标准循环载荷;通过等效转换,将所述标准循环载荷转换为等效循环载荷;将所述等效循环载荷乘以对应的散度系数,得到试验载荷谱。可选的,所述确定主轴的标准循环载荷,具体包括:根据扭矩MT、振动扭矩ΔMT、轴向力P、旋转弯矩Mb确定主轴的标准循环载荷。可选的,所述通过等效转换,将所述标准循环载荷转换为等效循环载荷,具体包括:按照载荷作用的循环次数要求,将扭矩MT、轴向力P划分为低循环载荷,将振动扭矩ΔMT、旋转弯矩Mb划分为高循环载荷;分别计算主轴在所述低循环载荷和所述高循环载荷作用下的应力,得到主轴在所述低循环载荷峰值作用下的应力幅值σm和在所述高循环载荷作用下的应力幅值σa;使用Goodman曲线评估主轴在标准循环载荷下的高循环疲劳寿命储备α;选取适当的振动扭矩值ΔMT′,计算主轴在载荷ΔMT′作用下寿命考核部位的应力,得到应力幅值σ'a;使用所述σ'a和σa,max按公式3计算出等效循环载荷MT、P、ΔMT′下的高循环疲劳寿命储备α';通过调整振动扭矩ΔMT′值,使得寿命考核部位的高循环疲劳储备α′与α相当,则可确定出等效后的高循环载荷ΔMT′。可选的,所述将所述等效循环载荷乘以对应的散度系数,得到试验载荷谱,具体包括:根据标准循环的低循环载荷和等效后的高循环载荷振动扭矩ΔMT′分别乘以疲劳散度系数得到试验的低循环载荷MTs、Ps和试验高循环载荷ΔMTs:MTs=K1×K2×K3×MT…………………………………………4Ps=K1×K2×K3×P……………………………………………5ΔMTs=K1'×K2×K3×ΔM'T………………………………………6式中:MTs为试验载荷的扭矩;Ps为试验载荷的轴向力;ΔMTs为试验载荷的振动扭矩;K1为低循环疲劳载荷的散度系数;K1'为高循环疲劳载荷的散度系数;K2为材料强度修正系数;K3为温度修正系数;MT为标准循环载荷的主扭矩;P为标准循环载荷的轴向力;ΔMT′为等效后的振动扭矩。可选的,所述使用Goodman曲线计算主轴在标准循环载荷下的高循环疲劳寿命储备α,具体包括:根据公式1、公式2计算主轴在标准循环载荷下的高循环疲劳寿命储备α,其中,公式1式中,σa,max为允许的最大高循环应力;σm为平均应力,取为低循环峰值载荷下的应力幅值;σ-1为对应温度下的材料疲劳强度;σb为对应温度下的材料拉伸强度;公式2式中,σa为高循环载荷下的应力幅值。本发明提供的一种针对发动机轴类零件疲劳试验载荷的确定方法。通过将旋转弯矩载荷等效转换为振动扭矩载荷,解决轴类疲劳试验中旋转弯矩载荷不能在普通疲劳试验机上加载的问题,使得可以使用普通疲劳试验机开展小尺寸的轴类零件疲劳试验,不需要再针对被试轴尺寸进行专门的轴类疲劳试验器设计、重新建设或大量改造,从而降低轴类疲劳试验的成本,也降低了试验载荷加载难度,提高了载荷加载精度。附图说明图1本发明的方法流程图;图2本发明的标准循环载荷谱示意图;图3本发明的Goodman曲线示意图。具体实施方式本发明创造是在原寿命散度系数法确定试验载荷的基础上优化改进,在确定主轴的标准循环载荷后,通过加入对载荷的等效转换,将标准循环载荷转换为等效循环载荷,再乘以对应的散度系数,得到试验载荷谱。以轴流式发动机为例,对其技术方案和具体实施方式进行介绍。发动机主轴疲劳试验载荷确定的具体流程如图1所示。1确定标准循环载荷对主轴疲劳寿命有影响的载荷主要为扭矩MT、振动扭矩ΔMT、轴向力P、旋转弯矩Mb,主轴寿命考核部位的这些载荷组成了主轴的标准循环载荷图2。2区分高低循环载荷按照载荷作用的循环次数要求,将步骤1中确定的标准循环载荷划分为低循环载荷和高循环载荷。其中,扭矩MT、轴向力P为低循环载荷,振动扭矩ΔMT、旋转弯矩Mb为高循环载荷。3高、低循环载荷下的应力分析分别计算主轴在步骤2中划分得到的低循环载荷和高循环载荷作用下的应力,得到主轴在低循环载荷扭矩MT、轴向力P峰值作用下的应力幅值σm和在高循环载荷振动扭矩ΔMT、旋转弯矩Mb作用下的应力幅值σa。为获得较高的计算精度,建议使用有限元分析软件对主轴进行二维或三维有限元计算。计算时需要考虑主轴在发动机工作状态下的温度场。4标准循环载荷下的高循环疲劳寿命储备计算使用Goodman曲线图3评估主轴在标准循环载荷MT、P、ΔMT、Mb下的高循环疲劳寿命储备α,计算公式见式1、2。式中,σa,max——允许的最大高循环应力;σm——平均应力,取为低循环峰值载荷下的应力幅值;σ-1——对应温度下的材料疲劳强度;σb——对应温度下的材料拉伸强度。式中,σa——高循环载荷下的应力幅值。5高循环载荷等效转换将标准循环载荷谱中的高循环载荷进行等效转换,即:使用单一的振动扭矩ΔMT′载荷等效代替标准循环载荷谱中振动扭矩ΔMT和旋转弯矩Mb振动扭矩载荷。具体方法如下:选取适当的振动扭矩值ΔMT′,计算主轴在载荷ΔMT′作用下寿命考核部位的应力,得到应力幅值σ'a,计算方法同步骤3。使用σ'a和步骤4中的σa,max按公式3计算出等效循环载荷MT、P、ΔMT′下的高循环疲劳寿命储备α'。通过调整振动扭矩ΔMT′值,使得寿命考核部位的高循环疲劳储备α′与α相当,则可确定出等效后的高循环载荷ΔMT′。6确定试验载荷试验载荷由试验低循环载荷MTs、Ps和试验高循环载荷ΔMTs组成。由标准循环的低循环载荷扭矩MT、轴向力和P和等效后的高循环载荷振动扭矩ΔMT′分别乘以疲劳散度系数得到试验的低循环载荷和高循环载荷试验高循环载荷:MTs=K1×K2×K3×MT…………………………………………4Ps=K1×K2×K3×P……………………………………………5ΔMTs=K1'×K2×K3×ΔM'T………………………………………6式中:MTs——试验载荷的扭矩;Ps——试验载荷的轴向力;ΔMTs——试验载荷的振动扭矩;K1——低循环疲劳载荷的散度系数;K1'——高循环疲劳载荷的散度系数;K2——材料强度修正系数;K3——温度修正系数;MT——标准循环载荷的主扭矩;P——标准循环载荷的轴向力;ΔMT′——等效后的振动扭矩;其中,修正系数K1、K1'、K2和K3的选取与经典的疲劳散度系数法取值方法一致。以上主轴疲劳试验载荷确定方法,以涡喷涡扇发动机的主轴为例,在用于涡轴发动机主轴试验载荷确定时,还需考虑1×P力F1×P和1×P力矩M1×P等载荷。

权利要求:1.一种发动机主轴疲劳试验载荷确定方法,其特征在于:所述方法包括:确定主轴的标准循环载荷;通过等效转换,将所述标准循环载荷转换为等效循环载荷;将所述等效循环载荷乘以对应的散度系数,得到试验载荷谱。2.根据权利要求1所述的方法,其特征在于:所述确定主轴的标准循环载荷,具体包括:根据扭矩MT、振动扭矩ΔMT、轴向力P、旋转弯矩Mb确定主轴的标准循环载荷。3.根据权利要求2所述的方法,其特征在于:所述通过等效转换,将所述标准循环载荷转换为等效循环载荷,具体包括:按照载荷作用的循环次数要求,将扭矩MT、轴向力P划分为低循环载荷,将振动扭矩ΔMT、旋转弯矩Mb划分为高循环载荷;分别计算主轴在所述低循环载荷和所述高循环载荷作用下的应力,得到主轴在所述低循环载荷峰值作用下的应力幅值σm和在所述高循环载荷作用下的应力幅值σa;使用Goodman曲线评估主轴在标准循环载荷下的高循环疲劳寿命储备α;选取适当的振动扭矩值ΔM′T,计算主轴在载荷ΔM′T作用下寿命考核部位的应力,得到应力幅值σ'a;使用所述σ'a和σa,max按公式3计算出等效循环载荷MT、P、ΔM′T下的高循环疲劳寿命储备α';通过调整振动扭矩ΔM′T值,使得寿命考核部位的高循环疲劳储备α′与α相当,则可确定出等效后的高循环载荷ΔM′T。4.根据权利要求3所述的方法,其特征在于:所述将所述等效循环载荷乘以对应的散度系数,得到试验载荷谱,具体包括:根据标准循环的低循环载荷和等效后的高循环载荷振动扭矩ΔM′T分别乘以疲劳散度系数得到试验的低循环载荷MTs、Ps和试验高循环载荷ΔMTs,具体为:MTs=K1×K2×K3×MT…………………………………………4Ps=K1×K2×K3×P……………………………………………5ΔMTs=K′1×K2×K3×ΔM'T………………………………………6式中:MTs为试验载荷的扭矩;Ps为试验载荷的轴向力;ΔMTs为试验载荷的振动扭矩;K1为低循环疲劳载荷的散度系数;K′1为高循环疲劳载荷的散度系数;K2为材料强度修正系数;K3为温度修正系数;MT为标准循环载荷的主扭矩;P为标准循环载荷的轴向力;ΔM′T为等效后的振动扭矩。5.根据权利要求3所述的方法,其特征在于:所述使用Goodman曲线计算主轴在标准循环载荷下的高循环疲劳寿命储备α,具体包括:根据公式1、公式2计算主轴在标准循环载荷下的高循环疲劳寿命储备α,其中,公式1式中,σa,max为允许的最大高循环应力;σm为平均应力,取为低循环峰值载荷下的应力幅值;σ-1为对应温度下的材料疲劳强度;σb为对应温度下的材料拉伸强度;公式2式中,σa为高循环载荷下的应力幅值。

百度查询: 中国航发四川燃气涡轮研究院 一种发动机主轴疲劳试验载荷确定方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。