买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】用于逆变器的控制装置_保时捷股份公司_201810750916.7 

申请/专利权人:保时捷股份公司

申请日:2018-07-10

公开(公告)日:2020-11-27

公开(公告)号:CN109245585B

主分类号:H02M7/5387(20070101)

分类号:H02M7/5387(20070101);H02M1/44(20070101)

优先权:["20170711 DE 102017115506.6"]

专利状态码:有效-授权

法律状态:2020.11.27#授权;2019.02.19#实质审查的生效;2019.01.18#公开

摘要:一种用于逆变器的控制装置具有第一逆变器接口、第二逆变器接口和多个桥接支路,这些桥接支路分别具有第一半导体开关器、绕组接线端以及第二半导体开关器。这些绕组接线端与绕组组件相连。控制装置形成为输出控制信号,控制信号在第一工作状态下能够在这些桥接支路中的至少两个桥接支路中实现第一桥接支路状态和第二桥接支路状态,其中在第一桥接支路状态中与桥接支路相关联的第二半导体开关器导通地连接,并且其中在第二桥接支路状态中与桥接支路相关联的第二半导体开关器不导通地连接。这些桥接支路中的至少两个桥接支路暂时地同时处于第一桥接支路状态中,然后在不同的时间点执行这至少两个桥接支路向该第二桥接支路状态的切换。

主权项:1.一种用于逆变器30的控制装置20,该逆变器具有第一逆变器接口31、第二逆变器接口32和多个桥接支路61,62,63,多个桥接支路61,62,63分别具有第一半导体开关器41,42,43;151,152,153、绕组接线端81,82,83以及第二半导体开关器51,52,53;141,142,143,该第一半导体开关器41,42,43;151,152,153设置在该第一逆变器接口31与该绕组接线端81,82,83之间,并且该第二半导体开关器51,52,53;141,142,143设置在该绕组接线端81,82,83与该第二逆变器接口32之间,多个绕组接线端81,82,83与绕组组件80相连,该控制装置形成为输出控制信号U21,该控制信号在第一工作状态Z1下能够在多个桥接支路中的至少两个桥接支路中实现第一桥接支路状态BA1和第二桥接支路状态BA2,其中在该第一桥接支路状态中,与该桥接支路61,62,63相关联的第二半导体开关器51,52,53;141,142,143导通地连接,并且其中在该第二桥接支路状态中,与该桥接支路61,62,63相关联的第二半导体开关器51,52,53;141,142,143不导通地连接,并且其中多个桥接支路61,62,63中的至少两个桥接支路暂时地同时处于该第一桥接支路状态BA1中,并且然后在不同的时间点执行这至少两个桥接支路61,62,63向该第二桥接支路状态BA2的切换,以便能够在过渡到该第二桥接支路状态BA2时将该绕组组件80中的能量转换成在该第一逆变器接口31与对应的桥接支路61,62,63的绕组接线端81,82,83之间的电流。

全文数据:用于逆变器的控制装置技术领域本发明涉及一种用于逆变器的控制装置。背景技术逆变器例如用于提供直流电压并且对绕组组件进行供应,使得该绕组组件产生用于驱动转子的磁场,并且为此逆变器的开关器受控制装置控制。US20030210014A1示出在车辆系统中的电池充电装置,该电池充电装置在电压降低到过低时将电池与车辆系统去耦。电池充电装置控制电池的充电速率并且当电压超过预定的阈值时再次将电池与车辆系统相连。US20050258796A1示出用于驱动发动机的具有带中性点的三相绕组组件的逆变器。在中性点处设置有辅助电压源和辅助负载。通过辅助电压源和辅助负载可以测定该中性点处的状态并且检测异常。可以依赖于此而影响逆变器。US20150180356A1示出具有带半导体开关器的桥接电路的电转换器。发明内容本发明的目的是,提供一种新的控制装置。这个目的通过如下项1的主题来实现,如下项2-16是优选的实施方案。1.一种用于逆变器的控制装置,该逆变器具有第一逆变器接口、第二逆变器接口和多个桥接支路,这些桥接支路分别具有第一半导体开关器、绕组接线端以及第二半导体开关器,该第一半导体开关器设置在该第一逆变器接口与该绕组接线端之间,并且该第二半导体开关器设置在该绕组接线端与该第二逆变器接口之间,这些绕组接线端与绕组组件相连,该控制装置形成为输出控制信号,该控制信号在第一工作状态下能够在这些桥接支路中的至少两个桥接支路中实现第一桥接支路状态和第二桥接支路状态,其中在该第一桥接支路状态中,与该桥接支路相关联的第二半导体开关器导通地连接,并且其中在该第二桥接支路状态中,与该桥接支路相关联的第二半导体开关器不导通地连接,并且其中这些桥接支路中的至少两个桥接支路暂时地同时处于该第一桥接支路状态中,并且然后在不同的时间点执行这至少两个桥接支路向该第二桥接支路状态的切换,以便能够在过渡到该第二桥接支路状态时将该绕组组件中的能量转换成在该第一逆变器接口与对应的桥接支路的绕组接线端之间的电流。2.根据如上项1所述的控制装置,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号被设置为在至少两个桥接支路中分别周期性地实现该第一桥接支路状态与该第二桥接支路状态之间的来回切换。3.根据如上项2所述的控制装置,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号被设置为在该至少两个桥接支路中以相同的周期时长来进行在该第一桥接支路状态与该第二桥接支路状态之间的来回切换。4.根据如上项3所述的控制装置,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号被设置为用相位偏移来控制该至少两个桥接支路。5.根据如上项4所述的控制装置,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号在预定的时间点实现单独的桥接支路之间的相位偏移的改变。6.根据如上项5所述的控制装置,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号借助于在至少一个桥接支路中延长该控制信号的周期来实现该相位偏移的改变。7.根据如上项5或6所述的控制装置,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号借助于在至少一个桥接支路中缩短该控制信号的周期来实现该相位偏移的改变。8.根据如上项2所述的控制装置,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号被设置为在该至少两个桥接支路中以不同的周期时长来进行在该第一桥接支路状态与该第二桥接支路状态之间的来回切换。9.根据如上项4至6之一所述的控制装置,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号被设置为在至少三个桥接支路中分别周期性地实现该第一桥接支路状态与该第二桥接支路状态之间的来回切换,其中用相位偏移来控制该至少三个桥接支路,该相位偏移在第一预定旋转方向上产生旋转场,并且其中在预定的时间点改变该至少三个桥接支路之间的相位偏移,使得在与第一预定旋转方向相反的旋转方向中产生旋转场。10.根据如上项4至6之一所述的控制装置,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号被设置为在至少四个桥接支路中分别周期性地实现该第一桥接支路状态与该第二桥接支路状态之间的来回切换,其中用相位偏移来控制该至少四个桥接支路,该相位偏移不产生仅仅在一个方向上环绕的旋转场。11.根据如上项2至6之一所述的控制装置,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号以至少5kHz、进一步优选至少10kHz、进一步优选至少50kHz、进一步优选至少100kHz且特别优选至少150kHz的频率来进行相应的桥接支路中的周期性来回切换。12.根据如上项1-6之一所述的控制装置,该控制装置形成为在第二工作状态中控制该逆变器的该第一半导体开关器和该第二半导体开关器,使得通过该绕组组件产生旋转场,该旋转场适合于驱动永磁体转子。13.根据如上项1-6之一所述的控制装置,该控制装置与逆变器相关联,该逆变器具有第一逆变器接口、第二逆变器接口和多个桥接支路,这些桥接支路分别具有第一半导体开关器、绕组接线端以及第二半导体开关器,该第一半导体开关器设置在该第一逆变器接口与该绕组接线端之间,并且该第二半导体开关器设置在该绕组接线端与该第二逆变器接口之间,这些绕组接线端与绕组组件相连。14.根据如上项13所述的控制装置,其中该绕组组件具有多个绕组,这些绕组在星形电路中与共用的星形点相连,其中每个绕组接线端通过该绕组组件的绕组之一与该共用的星形点相连。15.根据如上项14所述的控制装置,其中第一充电接口与该共用的星形点电连接,并且其中第二充电接口与该第二逆变器接口电连接,以便能够通过该第一充电接口和该第二充电接口来连接电压源。16.根据如上项1-6之一所述的控制装置,该控制装置与可再充电的电池相关联,该可再充电的电池与该第一逆变器接口和该第二逆变器接口电连接。在不同时间点将至少两个桥接支路切换到第二桥接支路状态造成电压和电流波动性降低。由此还减小了电磁干扰的风险。使用多个桥接支路还导致损失功率分布到桥接支路上并由此导致均匀的升温。根据一个优选的实施方式,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号被设置为在至少两个桥接支路中分别周期性地实现该第一桥接支路状态与该第二桥接支路状态之间的来回切换。由此可以进行电池的持续充电。根据一个优选的实施方式,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号被设置为在该至少两个桥接支路中以相同的周期时长来进行在该第一桥接支路状态与该第二桥接支路状态之间的来回切换。这在单独的切换中产生类似的电流大小并且由此产生了桥接支路的均匀的负载。根据一个优选的实施方式,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号被设置为用相位偏移来控制该至少两个桥接支路。这使得即使在相同的周期时长下也能实现电流波动的减小。根据一个优选的实施方式,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号在预定的时间点实现单独的桥接支路之间的相位偏移的改变。这破坏了相位关系并且由此消除了对该至少一个转子的机械影响的风险、尤其是产生长期的转矩和由此引起的旋转运动。根据一个优选的实施方式,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号借助于在至少一个桥接支路中缩短该控制信号的周期来实现该相位偏移的改变。这导致相对的相位偏移的改变。根据一个优选的实施方式,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号借助于在至少一个桥接支路中延长该控制信号的周期即,周期时长来实现该相位偏移的改变。这导致相对的相位偏移的改变。根据一个优选的实施方式,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号被设置为在该至少两个桥接支路中以不同的周期时长来进行在该第一桥接支路状态与该第二桥接支路状态之间的来回切换。由此避免了在一个方向上持续的旋转场。根据一个优选的实施方式,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号被设置为在至少三个桥接支路中分别周期性地实现该第一桥接支路状态与该第二桥接支路状态之间的来回切换,其中用相位偏移来控制该至少三个桥接支路,该相位偏移在第一预定旋转方向上产生旋转场,并且其中在预定的时间点改变在该至少三个桥接支路之间的相位偏移,使得在与第一预定旋转方向相反的旋转方向中产生旋转场。此类的相位中断阻止了在唯一的预定的旋转方向上持续驱动转子。根据一个优选的实施方式,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号被设置为在至少四个桥接支路中分别周期性地实现该第一桥接支路状态与该第二桥接支路状态之间的来回切换,其中用相位偏移来控制该至少四个桥接支路,该相位偏移不产生仅仅在一个方向上环绕的旋转场。也就是不通过相位偏移来将总是在唯一的方向上推进旋转场的绕组彼此前后串联,而是旋转场部分地在第一旋转方向和部分地在相反的旋转方向中交替。由此避免了转子的旋转。根据一个优选的实施方式,该控制装置形成为在该第一工作状态中至少暂时输出控制信号,该控制信号以至少5kHz、进一步优选至少10kHz、进一步优选至少50kHz、进一步优选至少100kHz且特别优选至少150kHz的频率来进行相应的桥接支路中的周期性来回切换。高频率减小了通过绕组组件对转子施加转矩并使其运动的风险。根据一个优选的实施方式,形成为在第二工作状态中控制该逆变器的该第一半导体开关器和该第二半导体开关器,使得通过该绕组组件产生旋转场,该旋转场适合于驱动永磁体转子。这能够实现将控制装置用于驱动和充电。根据一个优选的实施方式,该控制装置与逆变器相关联,该逆变器具有第一逆变器接口、第二逆变器接口和多个桥接支路,这些桥接支路分别具有第一半导体开关器、绕组接线端以及第二半导体开关器,该第一半导体开关器设置在该第一逆变器接口与该绕组接线端之间,并且该第二半导体开关器设置在该绕组接线端与该第二逆变器接口之间,这些绕组接线端与绕组组件相连。因此能够以优选的方式来使用控制装置。根据一个优选的实施方式,该绕组组件具有多个绕组,这些绕组在星形电路中与共用的星形点相连,其中每个绕组接线端通过该绕组组件的绕组之一与该共用的星形点相连。使用星形电路对于充电是特别有利的。根据一个优选的实施方式,第一充电接口与该共用的星形点电连接,并且其中第二充电接口与该第二逆变器接口电连接,以便能够通过该第一充电接口和该第二充电接口来连接电压源。由此简化了用于对电池充电的电压源的连接。根据一个优选的实施方式,该控制装置与可再充电的电池相关联,该可再充电的电池与该第一逆变器接口和该第二逆变器接口电连接。这使得能够通过逆变器对电池放电以及对电池再充电。附图说明本发明的其他细节和有利的改进方案得自于以下描述的和在附图中示出的、不应以任何方式理解为对本发明的限制的实施例以及得自于如上项2-16。图中示出:图1示出电驱动器和逆变器的构造的第一实施例,图2示出具有电驱动器和逆变器的第二实施例,图3以示意性图表示出逆变器中和绕组组件中的电压和电流,图4以示意性图表示出三相绕组组件中的电流,图5以示意性图示示出在执行所产生的磁场的旋转方向的反转时三相绕组组件中的电流,图6以示意性图示示出在执行所产生的磁场的旋转方向的反转时三相绕组组件中的电流,图7以示意性图示示出具有相同相位偏移的三相绕组组件中的电流,图8以示意性图示示出三相绕组组件中的电流,其中发生了旋转方向的改变,图9以示意性图示示出具有六相绕组组件的最终阶段中的电流,并且图10以示意性图示示出具有六个绕组和一个星形点的绕组组件。具体实施方式图1示出装置10,其具有电池12、逆变器30、绕组组件80、转子93和用于控制逆变器30的控制装置20。此类装置10可以例如用于驱动电动车辆。也称为最终阶段的逆变器30具有第一逆变器接口31、第二逆变器接口32和三个桥接支路61、62、63,这些桥接支路61、62、63分别具有第一半导体开关器41、42、43,绕组接线端81、82、83以及第二半导体开关器51、52、53。第一半导体开关器41、42、43设置在第一逆变器接口31与相关联的绕组接线端81、82、83之间,并且第二半导体开关器51、52、53设置在绕组接线端81、82、83与第二逆变器接口32之间。作为半导体开关器例如可以使用具有绝缘栅双极晶体管IGBT,这些双极晶体管是廉价的、但可以用相对低的切换频率来控制。此外,它们仅允许一个方向上的电流流动。有利的是使用场效应晶体管FET,尤其是使用能够实现非常高频率的碳化硅场效应晶体管SiC-FET。在实施例中,将续流二极管46、47、48、56、57、58与第一半导体开关器41、42、43和第二半导体开关器51、52、53并联连接,并且这能够实现与相关联的半导体开关器的正常电流流动方向相反的电流流动并且保护该半导体开关器免受过电压的影响。绕组接线端81、82、83与绕组组件80相连并且还可以称为相位接口。绕组组件80具有多个绕组84、86、88,并且在图示中每个绕组84、86、88与一个电阻85、87、89相关联,该电阻代表绕组导线的电阻。绕组接线端81通过绕组84和电阻85与星形点90相连。绕组接线端82通过绕组86和电阻87与星形点90相连。绕组接线端83通过绕组88和电阻89与星形点90相连。绕组组件80因此连接在星形电路中。电池12是可再充电电池,并且电池连接到第一逆变器接口31和第二逆变器接口32。第一充电接口91与星形点90电连接,并且第二充电接口92与第二逆变器接口32电连接。在实施例中,示例性地设置了具有两个接口的充电插座105,并且充电插座105的这两个接口优选分别与一个保险装置101或103以及一个充电接触器Ladeschütz102或104相关联,以便实现充电插座105与电池12的受控的断开。充电插座105通常安置在车辆侧。设置有电压源100,例如用于电动车辆的充电桩或连接到家庭电接口的直流充电装置。电压源100也可以形成为电流源,并且在现今的DC充电桩的情况下通常由车辆预定电压极限和或电流极限并且在适当时定期地更新。工作方式为了驱动转子93,控制装置20可以与已知类型的逆变器30电子通信并且由此产生驱动转子93的旋转磁场。这可以称为第二工作状态Z2。转子93可以是用于同步机器的永磁体转子,但也可以是异步机器的转子,例如具有用于鼠笼电机的具有短路笼的转子。还可行的是具有绕组的转子,例如用于外部激励的异步或同步机器。当电压源100的电压至少与可再充电电池12的标称电压一样大时,可再充电电池12的充电可以直接通过第一逆变器接口31和第二逆变器接口32进行。然而已经证实,具有例如800V或600V的标称电压的可再充电电池12是有利的,因为需要较低的电流来获得相同的功率并且由此降低损失功率。此外,可以根据需求使用非常高的功率。其他的优点、行为方式和边界条件在C.Jung2017,PowerUpwith800-VSystems:Thebenefitsofupgradingvoltagpowerforbattery-electricpassengervehicles用800-V系统供电:升级用于电池电力轿车的电压功率的益处,IEEEElectrificationMagazine,51:53-58,doi:10.1109MELE.2016.2644560中描述。然而当电压源100优选为直流电压源提供小于此类电池12的标称电压的电压,则电池12无法直接充电。可行的是,通过升压变压器来提高电压源100的电压。此类升压变压器在英语中被称为升压转换器Boost-Converter。逆变器30和绕组组件80可以通过充电接口91、92用作升压转换器,其中为了充电将电压源100连接到其上。这在下文中借助于图1和图3阐述,并且该状态可以称为第一工作状态Z1。图3示出示意性图表,其中展示了控制线路21处的电压U21、绕组84中的电流I84、半导体开关器51中的电流I51以及二极管46中的电流I46。通过线路21处的电压U21,控制装置20交替地导通第一桥接支路状态BA1和不导通第二桥接支路状态BA2地连接半导体开关器51。在此情况下,当信号U21为高HIGH时,半导体开关器51导通,但是也存在在低LOW时导通的半导体开关器。当半导体开关器51导通地连接时第一桥接支路状态BA1,例如在t1与t2之间或在t3与t4之间,电流从电压源100流过星形点90、电阻85、绕组84、绕组接线端81和半导体开关器51通过第二充电接口92回到电压源100。由此电流I84在绕组84中提高并且这个电流也流过半导体开关器51。桥接支路61的这个状态称为第一桥接支路状态BA1。与相应的桥接支路相关联的第一半导体开关器41、42、43在第一桥接支路状态BA1中优选被控制为不导通。在时间点t2、t4和t6,通过信号U21将半导体开关器51不导通地连接。因此,不再有电流I51流过半导体开关器51。绕组84旨在通过绕组84的电感来维持电流I84,并且因此电流从第二逆变器接口32流过电压源100、流过绕组的电阻85、流过绕组84的电感并且流过二极管46到第一逆变器接口31并且由此提高第一逆变器接口31与第二逆变器接口32之间的电压U。也就是,电压升高到电压源100的电压之上并且可以用于对可再充电电池12充电。桥接支路61的此状态称为第二桥接支路状态BA2。在实施例中,第一半导体开关器41在第一桥接支路状态BA1中以及在第二桥接支路状态BA2中是不导通的,并且在第二桥接支路状态BA2中电流流过续流二极管46。然而同样可行的是,在第二桥接支路状态BA2中在适当选择所属的构造元件例如FET的情况下导通地连接半导体开关器41,使得电流可以直接流过第一半导体开关器41。在此情况下,仍然仅有非常小的电流流过续流二极管。在非常小的充电功率下,还可以在适当时取消续流二极管。由此,借助于具有信号I84的电流图表能够直接读出控制电路20是在第一桥接支路状态BA1还是在第二桥接支路状态BA2中驱动相应的桥接支路。借助于桥接支路61来说明基本原理。然而完全可行的是,通过另外的桥接支路62和63来并行或彼此相继地提高第一逆变器接口31与第二逆变器接口32之间的电压U。流过二极管46、47、48的电流彼此相加,并且由此可以通过使用多个桥接支路61、62、63对电池12进行快速充电。控制装置20此外通过线路21、22、23、24、25、26向逆变器30输出控制信号U21、U22、U23、U24、U25、U26。图4示例性示出经过由控制装置20对对应的半导体开关器51、52、53的控制的通过绕组84的电流I84、通过绕组86的电流I86和通过绕组88的电流I88,其中在第一桥接支路状态BA1电流增大和第二桥接支路状态BA2电流减小之间切换。半导体开关器51、52、53分别通过周期性信号来控制。在当前实施例中,对应的半导体开关器51、52、53的50%的周期是导通连接的BA1且50%的周期是不导通BA2连接的。但是,依赖于电池12的标称电压和电压源100的电压,还可以要求或希望其他的比例。在此实施例中,相邻信号I84和I86之间的相位偏移为约40°,并且相邻信号I86和I88之间的相位偏移同样为约40°。在加和电流时,这产生了在第一逆变器接口31处的波动性,然而该波动性比在没有相位偏移的控制时也就是其中在所有桥接支路61、62、63处同时切换到第二桥接支路状态BA2更小。通过使用相位偏移,通过三相绕组组件80产生了旋转场,并且该旋转场依赖于应用情形是不希望的,即使得转子93运动或产生大转矩。这可能例如导致在传动器区域中的磨损。在当前实施例中,相邻信号之间的相位偏移不等于120°,并且因此不存在导致驱动永磁体转子93的均匀环绕的旋转场。在此实施例中部分地两个桥接支路、部分地三个桥接支路、部分地一个桥接支路、且部分地没有桥接支路处于第一桥接支路状态BA1中。也就是说向第二桥接支路状态BA2中的过渡在不同时间点进行。已经证实为有利的是,用控制信号通过线路21、23、25来控制半导体开关器51、52、53,该控制信号分别为至少5kHz、进一步优选至少10kHz、进一步优选至少50kHz、进一步优选至少100kHz且特别优选至少150kHz。对于较高的频率有利的是,至少一个半导体开关器实施为碳化硅半导体开关器或氮化镓半导体开关器。通过高频率一方面可以实现流向逆变器接口31、32的电流的更小的波动性,且另一方面永磁体转子93无法跟随这种高频率,使得不出现转子93的不希望的旋转。然而,依赖于半导体类型,在高频率下出现较大的热损失,这种热损失在适当时必须通过降低频率来进行限制。在图4中电流I84、I86、I88在由上线111和下线112展示的带之内延伸。图5示出图4的变体,其中直到用线113标记并且接近t4的时间点为止,在电流I84、I86、和I88之间存在产生在第一旋转方向上的旋转场的相位偏移。在线113和114之间的时间中,通过线路21供应的用于半导体开关器51的信号的周期被延长,并且由此信号I84跟随在信号I86和I88之后。这实现了在绕组组件80中所产生的旋转场的反转。这是有利的,因为转子93作为惯性物质,即使在某种程度上跟随旋转场,也不能突然在相反的方向上旋转。延长用于控制半导体开关器51的周期的缺点在于,信号I84离开线111和112之间的带在没有延长周期的情况下电流在该带中移动。在相应的桥接支路中第一桥接支路状态BA1与第二桥接支路状态BA2之间的切换优选借助于用于确定相应时间的计时器而在控制装置20中进行。还可以使用计时器中断。于是可以在切换桥接支路状态时对于每个桥接支路确定应何时进行下一次切换。这些值例如可以保存在表中。图6示出在通过控制装置20对应地控制半导体开关器51、52、53时电流I84、I86和I88的另一个实施例。直到在t3附近的时间点115为止,电流I84、I86和I88设置有相对彼此预定的相位偏移。在时间点115,在此提高电流I88,其方式为将半导体开关器53提前再次导通,也就是在桥接支路63中设置第一桥接支路状态。优选地,第一桥接支路状态同样提前结束,并且由此信号I88在信号I84和I86之前。由此同样反转该旋转场的旋转方向,并且线路21、23和25处的信号可以再次用相同的周期时长来供应。这也可以称为相位中断。所描述的对半导体开关器51、52和53的控制有利地导致电流I84、I86和I88在常见的电流带宽中移动。图7示出通过控制装置20控制半导体开关器51、52、53或者通过此控制产生的电流I84、I86和I88的另一个实施例。与图4相比,电流I84和I86或I86和I88分别具有120°的相位偏移。这在第一逆变器接口31和第二逆变器接口32之间产生了特别平滑的电压U,因为电流曲线的高度和深度是均匀分布的。这在高频率下是正的。然而,通过这些电流在绕组组件80中产生的旋转场均匀地延伸并且因此可能在低切换频率下导致对转子93的不希望的驱动。电流I84、I86和I88位于由线111和112限定的带中。图8示出另一个实施例,其中在时间点t4周围的线116和117之间的区域中通过电流I84、I86和I88产生的旋转场的方向发生变化。因为在电流I84、I86和I88之间分别存在120°的相位偏移,所以必须将至少两个或所有三个电流I84、I86和I88相对彼此偏移。在此实施例中,由控制装置20供应到半导体开关器52的信号的周期时长在时间点116和时间点117之间延长,并且由此在此实施例中电流I86降低得更深并随后还提高得更多。由此电流I86的相位偏移120°。另外,通过线路25供应到半导体开关器53的信号的周期在时间点t4缩短,以便由此将电流I88的相位减少120°。在时间点117再次存在电流I84、I86和I88之间120°的相位差,然而通过这些电流产生的旋转场的方向已经被反转。在图8、图6和图5中所示的相位差的改变可以例如在预定的均匀或不均匀的时间点进行重复。图10示出六相绕组组件80的实施例。第一绕组接线端81通过绕组84和电阻85与星形点90相连。绕组接线端181通过绕组184和电阻185与星形点90相连。绕组接线端82通过绕组86和电阻87与星形点90相连。绕组接线端182通过绕组186和电阻187与星形点90相连。绕组接线端83通过绕组88和电阻89与星形点90相连。绕组接线端183通过绕组188和电阻189与星形点90相连。必须分别将一个桥接支路与绕组接线端81、181、82、182、83和183相关联。图9示出用于图10的绕组组件80的具有六个桥接支路的最终阶段30的控制的实施例。展示了电流I84、I86、I88、I184、I186和I188。这些电流相对彼此具有60°的相位差并且这在第一逆变器接口31和第二逆变器接口32之间产生了相对平滑的电压U的曲线。虽然在三相绕组组件80中在用相同的周期时长和相位差来控制逆变器30时总是产生旋转场,但是在具有至少四个绕组和相关联的桥接支路的绕组组件80中,相位偏移的序列可以如下选择,使得不持续产生在预定的旋转方向上延伸的旋转场。这可以以如下方式实现:选择相位偏移,使得彼此相继的电流最大值产生在不同方向上的旋转场的旋转。图2示出用于装置10的另一个实施例。虽然在图1中充电接口91、92连接到星形点90并且连接到下部的逆变器接口,但是在图2中充电接口91、92连接在星形点90和上部的逆变器接口。与第二充电接口92相连的逆变器接口在这两个图中都标记为第二逆变器接口32,并且另一个逆变器接口标记为第一逆变器接口31。第一逆变器接口31在图1中与电池12的正极相连,在图2中与负极相连。第二逆变器接口32在图1中与电池12的负极相连,在图2中与正极相连。在图1中标记为半导体开关器41、42、43、51、52、53的半导体开关器在图2中标记为半导体开关器141、142、143、151、152和153。图1的二极管46、47、48、56、57、58在图2中标记为二极管146、147、148、156、157、158并且同样用作续流二极管。而在图1中半导体开关器51、52、53用于升高电压,在图2中半导体开关器141、142、143用于升高电压。第一桥接支路状态BA1例如在桥接支路61中设定,其中第二半导体开关器141是导通地连接的。由此,电流从电压源100流过充电插座105、流过第二逆变器接口32、流过第二半导体开关器141、流过绕组接线端81、流过绕组84、流过电阻85并流过星形点90回到电压源100。由此,绕组84中的电流增大,然而在与图1相反的方向。然后设定第二桥接支路状态BA2,其中通过控制装置20将第二半导体开关器141不导通地连接并且任选地将第一半导体开关器151导通地连接。因此,不再有电流流过第二半导体开关器141。绕组84旨在维持通过绕组84的电流,并且因此电流从第一逆变器接口31流过续流二极管156或在第一半导体开关器151接通时流过第一半导体开关器151、流过绕组接线端81、流过绕组84、流过电阻85、流过星形点90并且流过电压源100到第二逆变器接口32并且由此提高第二逆变器接口32与第一逆变器接口31之间的电压U。也就是,电压升高到电压源100的电压之上并且可以用于对可再充电电池12充电。控制装置20可以简单地改变以获得图2的电路,其中在线路21、22处、在线路23、24处以及在线路25、26处分别交换信号。在其余方面,实施方式和工作方式对应于先前附图的那些。自然,在本发明的范围内可以有多种多样的变化和修改。例如可以仅使用桥接支路的一部分来升高电压。在第一逆变器接口与第二逆变器接口之间可以设置中间电路电容器,但是该中间电路电容器导致额外的构造空间和重量。

权利要求:1.一种用于逆变器30的控制装置20,该逆变器具有第一逆变器接口31、第二逆变器接口32和多个桥接支路61,62,63,这些桥接支路61,62,63分别具有第一半导体开关器41,42,43;151,152,153、绕组接线端81,82,83以及第二半导体开关器51,52,53;141,142,143,该第一半导体开关器41,42,43;151,152,153设置在该第一逆变器接口31与该绕组接线端81,82,83之间,并且该第二半导体开关器51,52,53;141,142,143设置在该绕组接线端81,82,83与该第二逆变器接口32之间,这些绕组接线端81,82,83与绕组组件80相连,该控制装置形成为输出控制信号U21,该控制信号在第一工作状态Z1下能够在这些桥接支路中的至少两个桥接支路中实现第一桥接支路状态BA1和第二桥接支路状态BA2,其中在该第一桥接支路状态中,与该桥接支路61,62,63相关联的第二半导体开关器51,52,53;141,142,143导通地连接,并且其中在该第二桥接支路状态中,与该桥接支路61,62,63相关联的第二半导体开关器51,52,53;141,142,143不导通地连接,并且其中这些桥接支路61,62,63中的至少两个桥接支路暂时地同时处于该第一桥接支路状态BA1中,并且然后在不同的时间点执行这至少两个桥接支路61,62,63向该第二桥接支路状态BA2的切换,以便能够在过渡到该第二桥接支路状态BA2时将该绕组组件80中的能量转换成在该第一逆变器接口31与对应的桥接支路61,62,63的绕组接线端81,82,83之间的电流。2.根据权利要求1所述的控制装置20,该控制装置形成为在该第一工作状态Z1中至少暂时输出控制信号,该控制信号被设置为在至少两个桥接支路中分别周期性地实现该第一桥接支路状态BA1与该第二桥接支路状态BA2之间的来回切换。3.根据权利要求2所述的控制装置20,该控制装置形成为在该第一工作状态Z1中至少暂时输出控制信号,该控制信号被设置为在该至少两个桥接支路61,62,63中以相同的周期时长来进行在该第一桥接支路状态BA1与该第二桥接支路状态BA2之间的来回切换。4.根据权利要求3所述的控制装置20,该控制装置形成为在该第一工作状态Z1中至少暂时输出控制信号,该控制信号被设置为用相位偏移来控制该至少两个桥接支路61,62,63。5.根据权利要求4所述的控制装置20,该控制装置形成为在该第一工作状态Z1中至少暂时输出控制信号,该控制信号在预定的时间点实现单独的桥接支路61,62,63之间的相位偏移的改变。6.根据权利要求5所述的控制装置20,该控制装置形成为在该第一工作状态Z1中至少暂时输出控制信号,该控制信号借助于在至少一个桥接支路中延长该控制信号的周期来实现该相位偏移的改变。7.根据权利要求5或6所述的控制装置20,该控制装置形成为在该第一工作状态Z1中至少暂时输出控制信号,该控制信号借助于在至少一个桥接支路中缩短该控制信号的周期来实现该相位偏移的改变。8.根据权利要求2所述的控制装置20,该控制装置形成为在该第一工作状态Z1中至少暂时输出控制信号,该控制信号被设置为在该至少两个桥接支路61,62,63中以不同的周期时长来进行在该第一桥接支路状态BA1与该第二桥接支路状态BA2之间的来回切换。9.根据权利要求4至6之一所述的控制装置20,该控制装置形成为在该第一工作状态Z1中至少暂时输出控制信号,该控制信号被设置为在至少三个桥接支路中分别周期性地实现该第一桥接支路状态BA1与该第二桥接支路状态BA2之间的来回切换,其中用相位偏移来控制该至少三个桥接支路,该相位偏移在第一预定旋转方向上产生旋转场,并且其中在预定的时间点改变该至少三个桥接支路之间的相位偏移,使得在与第一预定旋转方向相反的旋转方向中产生旋转场。10.根据权利要求4至6之一所述的控制装置20,该控制装置形成为在该第一工作状态Z1中至少暂时输出控制信号,该控制信号被设置为在至少四个桥接支路中分别周期性地实现该第一桥接支路状态BA1与该第二桥接支路状态BA2之间的来回切换,其中用相位偏移来控制该至少四个桥接支路,该相位偏移不产生仅仅在一个方向上环绕的旋转场。11.根据权利要求2至6之一所述的控制装置20,该控制装置形成为在该第一工作状态Z1中至少暂时输出控制信号,该控制信号以至少5kHz、进一步优选至少10kHz、进一步优选至少50kHz、进一步优选至少100kHz且特别优选至少150kHz的频率来进行相应的桥接支路中的周期性来回切换。12.根据以上权利要求1-6之一所述的控制装置20,该控制装置形成为在第二工作状态Z2中控制该逆变器30的该第一半导体开关器41,42,43;151,152,153和该第二半导体开关器51,52,53;141,142,143,使得通过该绕组组件80产生旋转场,该旋转场适合于驱动永磁体转子93。13.根据以上权利要求1-6之一所述的控制装置20,该控制装置与逆变器相关联,该逆变器30具有第一逆变器接口31、第二逆变器接口32和多个桥接支路61,62,63,这些桥接支路61,62,63分别具有第一半导体开关器41,42,43;151,152,153、绕组接线端81,82,83以及第二半导体开关器51,52,53;141,142,143,该第一半导体开关器41,42,43;151,152,153设置在该第一逆变器接口31与该绕组接线端81,82,83之间,并且该第二半导体开关器51,52,53;141,142,143设置在该绕组接线端81,82,83与该第二逆变器接口32之间,这些绕组接线端81,82,83与绕组组件80相连。14.根据权利要求13所述的控制装置,其中该绕组组件80具有多个绕组84,86,88,这些绕组84,86,88在星形电路中与共用的星形点90相连,其中每个绕组接线端81,82,83通过该绕组组件80的绕组84,86,88之一与该共用的星形点90相连。15.根据权利要求14所述的控制装置,其中第一充电接口91与该共用的星形点90电连接,并且其中第二充电接口92与该第二逆变器接口32电连接,以便能够通过该第一充电接口91和该第二充电接口92来连接电压源100。16.根据以上权利要求1-6之一所述的控制装置,该控制装置与可再充电的电池12相关联,该可再充电的电池12与该第一逆变器接口31和该第二逆变器接口32电连接。

百度查询: 保时捷股份公司 用于逆变器的控制装置

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。