买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】一种低速运动的高稳定性水下航行器流体动力布局_西北工业大学_201910553370.0 

申请/专利权人:西北工业大学

申请日:2019-06-25

公开(公告)日:2021-01-05

公开(公告)号:CN110316340B

主分类号:B63G8/00(20060101)

分类号:B63G8/00(20060101);G06F30/20(20200101)

优先权:

专利状态码:有效-授权

法律状态:2021.01.05#授权;2019.11.05#实质审查的生效;2019.10.11#公开

摘要:本发明提供了一种低速运动的高稳定性水下航行器流体动力布局,包括主体、舵和推进装置,所述的主体为回转体形结构,在主体尾段安装有全动舵,在主体尾段端面安装有螺旋桨作为推进装置;所述全动舵的弦长和展长分别为b和l,满足约束条件的目标函数minCxSl,b,χ。本发明适用于回转体形低速航行器的流体动力布局设计,采用本发明设计完成的50公斤级无人水下航行器和1500公斤无人水下航行器实航验证,流体动力布局确保了航行器在低速航行时具有良好的定深和定向能力,完全满足设计指标要求。

主权项:1.一种低速运动的高稳定性水下航行器流体动力布局,包括主体、全动舵和推进装置,其特征在于:所述的主体为回转体形结构,在主体尾段安装有全动舵,在主体尾段端面安装有螺旋桨作为推进装置;所述全动舵的弦长和展长分别为b和l,满足约束条件为的目标函数minCxSl,b,χ,式中,CxS为水下航行器的阻力系数,Gy为水下航行器的纵向运动稳定裕度,Gz为水下航行器的横向运动稳定裕度,χ为全动舵前缘后掠角,D为水下航行器主体最大直径。

全文数据:一种低速运动的高稳定性水下航行器流体动力布局技术领域本发明属于机械工程领域,涉及一种水下航行器流体动力布局设计。背景技术回转体形无人水下航行器作为一种海洋装备已被已广泛应用于海洋国防建设和海洋经济发展,在面向海洋经济发展,越来越多需要可以低速速度约3节运动的无人水下航行器。而在低速航行状态下,需要无人水下航行器保持良好的航行状态和稳定的姿态,否则无人水下航行器将不能完成海底勘探、海洋信息采集、航路规划以及海底搜救等任务。目前国内外比较成熟的无人水下航行器实际航行速度都超过4节,为稳定航行采用矢量推进或“鳍+舵”的流体动力布局。因此,需要设计一种高稳定性低速运动的无人水下航行器流体动力布局,以使得回转体形无人水下航行器能够满足低速运动的姿态稳定的航行要求。发明内容为了克服现有技术的不足,本发明提供一种低速运动高稳定性的无人水下航行器流体动力布局设计,以实现无人水下航行器在低速航行状态下的高稳定性。本发明解决其技术问题所采用的技术方案是:一种低速运动的高稳定性水下航行器,包括主体、舵和推进装置,所述的主体为回转体形结构,在主体尾段安装有全动舵,在主体尾段端面安装有螺旋桨作为推进装置;所述全动舵的弦长和展长分别为b和l,满足约束条件为的目标函数minCxSl,b,χ,式中,CxS为无人水下航行器的阻力系数,Gy为无人水下航行器的纵向运动稳定裕度,Gz为无人水下航行器的横向运动稳定裕度,χ为全动舵前缘后掠角,D为无人水下航行器本体最大直径。所述的全动舵采用翼型全动舵,呈十字型布局在主体尾段。所述的推进装置采用单螺旋桨结构。本发明的有益效果是:适用于回转体形低速航行器的流体动力布局设计,采用本发明设计完成的50公斤级无人水下航行器和1500公斤无人水下航行器实航验证,流体动力布局确保了航行器在低速3~5节航行时具有良好的定深和定向能力,完全满足设计指标要求。附图说明图1是回转体外形尺寸示意图;图2是流体动力布局示意图;图3是1500无人水下航行器流体动力布局;图4是1500全动舵平面尺寸;图中,1-无人水下航行器航行器主体外形,2-升降水平全动舵,3-方向垂直全动舵,4-螺旋桨。具体实施方式下面结合附图和实施例对本发明进一步说明,本发明包括但不仅限于下述实施例。本发明提供一种高稳定性低速运动的无人水下航行器流体动力布局设计,涉及过程如下:步骤1:结合尾部流线型外形,采用“主体+翼型全动舵+单螺旋桨”,其中翼型全动舵采用经典的十字型布局;步骤2:根据螺旋桨的安装基本要求,确定全动舵的后缘位置,给出全动舵的弦长和展长初值,分别为b和l。步骤3:完成全动舵的几何尺寸优化设计,设计模型如下:目标函数:minCxSl,b,χ约束条件:式中,CxS为无人水下航行器的阻力系数,Gy为无人水下航行器的纵向运动稳定裕度,Gz为无人水下航行器的横向运动稳定裕度,χ为全动舵前缘后掠角,D为无人水下航行器本体最大直径。本发明以1500无人水下航行器为例,结合附图对本发明进一步描述:本发明的流体动力布局要求是满足低速航行时良好的定深与定向的稳定性。流体动力布局的主要要求有两点:1平衡质量的要求:具体来说,要求水下航行器在以设定航速定常水平直线运动时,全动舵提供的力与力矩占比较小,即运动平衡状态下舵角较小。2运动稳定性要求:无人水下航行器运动稳定性要求具有良好的定深和定向航行能力。流体动力布局设计是在外形设计的基础上,完成全动舵的翼型设计、几何尺寸及布局。本发明的实例1500无人水下航行器主体外形设计结果为参见图1:回转体总长L=4850mm,回转体头部长度Lh=300mm,回转体中部长度Lp=3624mm,回转体收拢段长度Lt=744mm,回转体尾段长度Le=182mm,回转体中部直径D=324mm也是无人水下航行器本体最大直径,回转体头部直径DF=120mm,回转体尾段两端的直径分别为Dt=199.15mm和De=37.2mm,回转体尾段的侧壁倾角α=24°。1选择全动舵翼型全动舵主要采用平板翼型NACA系列,考虑到1500初步设计为大展长全动舵,舵弦长不大,同时考虑到舵轴的强度要求,选择NACA0008作为全动舵的截面翼型。2确定全动舵布局形式因十字形全动舵布置具有安装结构简单可靠、控制原理简单等特点,本设计方法采用大展长Dl2D的十字形全动舵布局形式。3全动舵平面几何尺寸的初步确定本发明的实例1500无人水下航行器的升降全动舵和方向全动舵平面尺寸完全一致,且满足D<l<2D和4全动舵的优化设计以航行器阻力最小为优化目标,以定深航行和定向航行运动稳定性为约束条件,以全动舵展长、弦长和前缘后掠角为主要设计参数,针对1500无人水下航行器进行流体动力布局优化设计,优化结果如下:全动舵优化结果见附图3和图4,b=120mm,l=490mm。1500无人水下航行器运动稳定裕度数值分析结果为:Gy=0.7325,Gz=0.7581,达到了设计效果,实航验证该无人水下航行器在3kn航速时具有良好的稳定航行能力。

权利要求:1.一种低速运动的高稳定性水下航行器流体动力布局,包括主体、舵和推进装置,其特征在于:所述的主体为回转体形结构,在主体尾段安装有全动舵,在主体尾段端面安装有螺旋桨作为推进装置;所述全动舵的弦长和展长分别为b和l,满足约束条件为的目标函数minCxSl,b,χ,式中,CxS为无人水下航行器的阻力系数,Gy为无人水下航行器的纵向运动稳定裕度,Gz为无人水下航行器的横向运动稳定裕度,χ为全动舵前缘后掠角,D为无人水下航行器本体最大直径。2.根据权利要求1所述的低速运动的高稳定性水下航行器流体动力布局,其特征在于:所述的全动舵采用翼型全动舵,呈十字型布局在主体尾段。3.根据权利要求1所述的低速运动的高稳定性水下航行器流体动力布局,其特征在于:所述的推进装置采用单螺旋桨结构。

百度查询: 西北工业大学 一种低速运动的高稳定性水下航行器流体动力布局

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。