买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】热式流量计、流量处理装置以及热式流量测量方法_欧姆龙株式会社_201711360215.4 

申请/专利权人:欧姆龙株式会社

申请日:2017-12-15

公开(公告)日:2021-02-23

公开(公告)号:CN108572017B

主分类号:G01F1/69(20060101)

分类号:G01F1/69(20060101);G01F1/696(20060101)

优先权:["20170314 JP 2017-048840"]

专利状态码:有效-授权

法律状态:2021.02.23#授权;2018.10.26#实质审查的生效;2018.09.25#公开

摘要:本发明提供热式流量计、流量处理装置以及热式流量测量方法,即使在流体的种类不同的情况下,也可简单地检测其流量。热式流量计包括:第1电阻体R1,配置在流体流经的流路中,受到通电而发热,并输出表示发热温度的第1输出信号;第2电阻体R2,在流路中配置于与第1电阻体不同的位置,并输出表示流体温度的第2输出信号;以及通电部,对第1电阻体进行通电,以使第1输出信号表示预定温度,且所述热式流量计决定一参数,并使用参数、决定此参数后所检测出的差分及预定的函数,来获取流量,所述参数用于将在进行通电的情况下受理预定的输入时的第1输出信号与第2输出信号之间的差分转换为目标值。

主权项:1.一种热式流量计,其特征在于包括:探针,配置在流体流经的流路中,所述探针包括:第1电阻体,受到通电而发热,并输出表示发热温度的第1输出信号;第2电阻体,配置在与所述第1电阻体不同的位置,并输出表示所述流体的温度的第2输出信号;通电部,对所述第1电阻体进行通电,以使所述第1输出信号表示预定温度;输出电路,输出基于从所述第1电阻体输出的第1输出信号与从所述第2电阻体输出的第2输出信号之间的差分的与所述流体的流量相关的信号;以及运算部,所述运算部包括:参数决定部,决定参数,所述参数用于将在进行所述通电的情况下受理预定的输入时检测出的所述差分转换为目标值;以及流量获取部,使用所述参数、决定所述参数后检测出的所述差分及预定的函数,来获取所述流量,所述通电部使对所述第1电阻体的通电周期性地通断,所述参数包含表示各所述周期内的通电导通或通电断开的时间的值,其中所述参数是从所述第1电阻体输出的第1输出信号与所述第2电阻体输出的第2输出信号之间的差分导出。

全文数据:热式流量计、流量处理装置以及热式流量测量方法技术领域[0001]本发明涉及一种热式流量计、流量处理装置以及热式流量测量方法,尤其涉及一种根据流体的温度来检测流量的热式流量计、流量处理装置以及热式流量测量方法。背景技术[0002]根据流经流路的流体温度来测量流速流量)的技术例如在专利文献1日本专利特开2007-309924号公报及专利文献2日本专利特开2010-54251号公报)中有所揭示。[0003]专利文献1中,控制部在少流量区分时,基于根据加热器heater的驱动而由温度传感器sensor输出的信号来测定流量。在少流量区分时以外,基于根据加热器的驱动而由温度传感器输出的信号与正弦波驱动信号的相位差来测定流量。[0004]专利文献2中,控制部使对发热电阻体的通电周期性地通断0N0FF地进行驱动。控制部是以将对发热电阻体的通电设为导通的时刻直至温差输出的值饱和之前的规定时刻为止的时间作为半周期来进行,此时,基于作为交流信号而输出的温差输出的振幅,来算出成为传感器输出的电压。[0005]现有技术文献[0000]专利文献[0007]专利文献1:日本专利特开2007-309924号公报[0008]专利文献2:日本专利特开2010-54251号公报发明内容[0009][发明所要解决的问题][0010]流体即使是油,也会根据其物理特性而存在各种种类,即使在油中,根据种类,温度与流速的关系也不同。为了应对此,传感器必须保有大量的相关函数。此时,存在下述等问题:内部的所需存储器memory变得庞大;用于预先获取相关函数的开发时成本变得庞大;用户user的设定变得复杂,传感器的操作方法难以理解。[0011]因此,用户迫切期望即使是各种种类的流体,也能简单地测量流量而不会导致成本变高,但专利文献1与专利文献2并未揭示用于基于流体种类不同这一情况的流量检测的结构。[0012]本发明的目的在于提供一种即使在流体的种类不同的情况下也能够简单地检测其流量的热式流量计、流量处理装置以及热式流量测量方法。[0013][解决问题的技术手段][0014]本发明的一方面的热式流量计包括:第1电阻体,配置在流体流经的流路中,受到通电而发热,并输出表示发热温度的第1输出信号;第2电阻体,在流路中配置在与第1电阻体不同的位置,并输出表示流体的温度的第2输出信号;通电部,对第1电阻体进行通电,以使第1输出信号表示预定温度;输出电路,输出基于从第1电阻体输出的第1输出信号与从第2电阻体输出的第2输出信号之间的差分的与流体的流量相关的信号;以及运算部。[0015]运算部包括:参数决定部,决定一参数,所述参数用于将在进行通电的情况下受理预定的输入时检测出的差分转换为目标值;以及流量获取部,使用参数、决定所述参数后检测出的差分及预定的函数,来获取流量。[0016]优选的是,目标值包含遵循基准关系的值,所述基准关系规定了差分与流量之间的关系的基准。[0017]优选的是,通电部使对第1电阻体的通电周期性地通断,参数包含表示各周期内的通电导通或通电断开的时间的值。[0018]优选的是,流量获取部使用差分与参数,并依照预定的函数来算出流量。[0019]优选的是,热式流量计具备具有流量的表table,所述流量对应于包含差分与参数的各组,且是使用所述组的差分与参数并依照预定的函数而算出,流量获取部基于包含所决定的参数、及决定所述参数后检测出的差分的组,从表中读出对应的流量。[0020]优选的是,运算部进而基于从第1电阻体输出的第1输出信号与从第2电阻体输出的第2输出信号之间的差分,并依照差分与流量的相关函数来算出流量。[0021]优选的是,热式流量计还包括收容部,所述收容部收容第1电阻体及第2电阻体,且构成为可配置于流路,收容部具有:金属材料的面,配置于流路时暴露于流体中;以及包含金属材料的接合部,用于将第1电阻体及第2电阻体接合于面的背面。[0022]根据本发明的另一方面,一种流量处理装置,构成为可连接传感器部,所述传感器部包括:第1电阻体,配置在流体流经的流路中,受到通电而发热,并输出表示发热温度的第1输出信号;以及第2电阻体,在流路中配置在与第1电阻体不同的位置,并输出表示流体的温度的第2输出信号,所述流量处理装置包括:通电部,对第1电阻体进行通电,以使第1输出信号表示预定温度;输出电路,输出基于从第1电阻体输出的第1输出信号与从第2电阻体输出的第2输出信号之间的差分的与流体的流量相关的信号;以及运算部。[0023]运算部包括:参数决定部,决定一参数,所述参数用于将在进行通电的情况下受理预定的输入时检测出的差分转换为目标值;以及流量获取部,使用参数、决定所述参数后检测出的差分及预定的函数,来获取流量。[0024]根据本发明的又一方面,提供一种热式流量测量方法,其借助一装置,所述装置包括:第1电阻体,配置在流体流经的流路中,受到通电而发热,并输出表示发热温度的第1输出信号;第2电阻体,在流路中配置在与第1电阻体不同的位置,并输出表示流体的温度的第2输出信号;通电部,对第1电阻体进行通电,以使第1输出信号表示预定温度;以及输出电路,输出基于从第1电阻体输出的第1输出信号与从第2电阻体输出的第2输出信号之间的差分的与流体的流量相关的信号。[0025]热式流量测量方法包括下述步骤:决定一参数,所述参数用于将在进行通电的情况下受理预定的输入时检测出的差分转换为目标值;以及使用参数、决定所述参数后检测出的差分及预定的函数,来获取流量。[0026][发明的效果][0027]根据本发明,即使在流体的种类不同的情况,也能够简单地检测其流量。附图说明[0028]图1是将实施方式的热式流量传感器100的外观与使用方式一同表示的图。[0029]图2是示意性地表示实施方式的探针probe4的内部的图。[0030]图3是实施方式的热式流量传感器100的框结构图。[0031]图4是示意性地表示实施方式的第1电阻体Rl的供给电流与测定温度的关系的图。[0032]图5A及图5⑻是示意性地表示实施方式的运算部17的用于流量测定的功能结构的图。[0033]图6中的(A至(C是示意性地说明实施方式的使用基准关系的流量导出流程的图。[0034]图7是示意性地表示实施方式的用于绝对显示模式的系数获取流程的图。[0035]图8是实施方式的绝对显示模式的处理流程图。[0036]图9是实施方式的相对显示模式的处理流程图。[0037]图10中的㈧至⑹是说明实施方式的比较例的图。[0038]图11是示意性地表示实施方式的钢管3与电阻体的接合部的图。[0039]图12是示意性地说明实施方式的温差dT的成分的图。[0040]图13㈧至图13⑹是表示实施方式的显示例的图。[0041]图14中的㈧及⑻是说明实施方式的变形例的图。[0042]图15㈧及图15⑻是说明实施方式的变形例中的脉宽变更带来的优点的图。[0043][符号的说明][0044]3:钢管[0045]4:探针[0046]5:本体部[0047]10:流量前置放大器部[0048]11:切换部[0049]12:电流源[0050]13:前级放大部[0051]14、15:后级放大部[0052]16:AD转换部[0053]17:运算部[0054]18:二值输出[0055]19:模拟输出[0056]20:外部输入[0057]21:流体[0058]22:电源输出部[0059]23:存储部[0060]24:IO-Link电路部[0061]25:加热部[0062]26:参数决定部[0063]27:流量获取部[0064]28:表[0065]29:输入输出切换部[0066]30:操作部[0067]31:单触式调整按钮[0068]32:内周面[0069]33:外周面[0070]40:显示部[0071]100:热式流量传感器[0072]231、231A、232、232A:值[0073]Al:固定成分[0074]A2:成分[0075]AD、D:箭头[0076]dT:温差[0077]dTO:目标值[0078]Rl:第1电阻体[0079]R2:第2电阻体[0080]Sl〜S21:步骤[0081]ST:脉冲周期[0082]T1、T2:测定温度[0083]机、[、¥3、财、耶、肫:层[0084]w、wl:脉宽[0085]U:流量[0086]a、b:系数具体实施方式[0087]以下,参照附图来说明各实施方式。以下的说明中,对于同一零件及构成要素标注同一符号。它们的名称及功能也相同。因此不再重复对它们的详细说明。[0088]概要)[0089]本发明中,使用配置于流体流路中的第1电阻体与第2电阻体。第1电阻体一边通过受到通电而自发热来保持预定的温度,一边在测定时输出表示与流速相应的温度的信号。第2电阻体输出表示流体温度大致固定的信号。热式流量传感器获取来自第1电阻体及第2电阻体这两者的输出(测定温度之差,导出用于使差成为目标值的参数,并使用参数且依照预定的函数来检测流量。因此,热式流量传感器能够通过参数来消除(cancel流体特性种类的不同,并对各种流体检测流量。[0090]外观)[0091]图1是将实施方式的热式流量传感器100的外观与使用方式一同表示的图。热式流量传感器100是“热式流量计”的一实施例,例如被用于对在工厂自动化(FactoryAutomation,FA中所用的加工设备的流体流量进行测量及监控。另外,实施方式中,有时为了表示流量而使用“流速”。“流速”是可通过乘以流路的剖面积而转换为“流量”的值,两者具有相关性。[0092]参照图1,热式流量传感器100具备:相当于“传感器部”的探针4,构成为可插拔于相当于流体21的流路的配管中;以及相当于“流量处理装置”的本体部5。探针4具备内部为中空的柱状钢管3,且可相对于本体部5而装卸自如地安装。本体部5具备:显示部40,用于显示包含检测或测量结果的信息;以及操作部30,用于受理用户的操作。操作部30包含后述的单触式调整按钮(onetouchtuningbutton31〇[0093]参照图1,探针4是以沿其长边方向延伸的假想轴相对于沿配管内的流体21所流动的方向延伸的假想轴箭头D的轴而正交的方式,插入至配管。另外,插入方式并不限定于正交,也可为交叉的方式。[0094]图2是示意性地表示实施方式的探针4的内部的图。探针4具备配置在钢管3的内周面32的不同位置的例如包含铂材料的第1电阻体Rl与第2电阻体R2。第1电阻体Rl是以进行发热与测温这两者的方式而构成,第2电阻体R2是以仅进行测温的方式而构成。此处,第2电阻体R2是配置在关于测温而不受第1电阻体Rl的自发热影响的位置。在探针4插入至配管内的状态下,钢管3的外周面33暴露于流体21中,热经由内周面32及外周面33而在电阻体第1电阻体Rl与第2电阻体R2与流体21之间传递。[0095]热式流量传感器100进行控制,以对第1电阻体Rl供给电流来使其自发热而成为比周围高的温度,但因所述的热传递,第1电阻体Rl的测定温度会对应于流体21的流速增大而下降。与此相对,第2电阻体R2的测定温度表示流体21的温度大致固定)。其结果,第1电阻体Rl及第2电阻体R2的测定温度产生差分。热式流量传感器100使用遵照基准关系的目标值,来决定用于将差分转换为目标值的参数,所述基准关系规定了测定温度的差分与流量之间的关系的基准。随后,使用所检测出的所述差分、所决定的参数及预定的用于流量计算的函数,来获取流量。[0096]实施方式中,对于第1电阻体Rl与第2电阻体R2,使用温度特性良好且经时变化少的铂材料,但材料并不限定于此。而且,流体21的种类例如可包含水、油、防冻液等,但并不限定于这些种类。[0097]结构)[0098]图3是实施方式的热式流量传感器100的框结构图。参照图3,本体部5具备:连接于探针4的第1电阻体Rl与第2电阻体R2的流量前置放大器preamplifier部10、后级放大部14、后级放大部15、模拟数字Analog-Digital,AD转换部16、包含微控制单元MicroControlUnit,MCU的运算部17、包含电可擦除可编程只读存储器(ElectricallyErasableProgrammableRead-OnlyMemory,EEPR0M的存储部23、输入输出切换部29、电源输出部22、加热部25、操作部30及显示部40。输入输出切换部29切换来自外部装置的外部输入20与来自运算部17的输出(二值输出18及模拟输出19。[0099]电源输出部22包含用于对热式流量传感器100的各部供给电力的电源电路部及对外部的通信电路部的一例即IO-Link电路部24。二值输出18及模拟输出19的输出部、10-Link电路部24及显示部40等构成输出与流体流量相关的信号的“输出电路”。[0100]加热部25为了控制第1电阻体R1的自发热,将依照来自运算部17的指令的加热信号输出至流量前置放大器部10。加热信号以决定从流量前置放大器部10的电流源12后述)输出至第1电阻体Rl的电流信号的脉宽(占空Duty比)的方式来发挥作用。[0101]流量前置放大器部10包含切换部11、电流源12及前级放大部13。流量前置放大器部10将与来自第1电阻体Rl与第2电阻体R2的测定温度相当的输出(电阻值转换为电压,并将转换后的电压输出至前级放大部13。前级放大部13将第1电阻体Rl与第2电阻体R2的输出电压放大,并分别经由后级放大部14与后级放大部15而输出至AD转换部16JD转换部16将经后级放大部14与后级放大部15放大的电压转换为数字的数据,并输出至运算部17。[0102]运算部17对表示第1电阻体Rl与第2电阻体R2的测定温度的数据进行处理。而且,将处理结果经由显示部40、IO-Link电路部24及输入输出切换部29而输出至外部。[0103]流量前置放大器部10的切换部11是与依据所述加热信号的脉冲周期同步地进行切换,以将第1电阻体Rl连接于电流源12或前级放大部13中的其中一者。通过切换,当第1电阻体Rl连接有电流源12时,从电流源12将以依据所述加热信号的脉宽而经调制的脉冲电流输出至第1电阻体R1。第1电阻体Rl被供给脉冲电流而发热。另一方面,当第1电阻体Rl连接有前级放大部13时,第1电阻体Rl的测温输出被给予至前级放大部13。[0104]测定方法)[0105]图4是示意性地表示实施方式的第1电阻体Rl的供给电流与测定温度的关系的图。参照图4,对于第1电阻体Rl,从流量前置放大器部10供给来自加热部25的加热信号所表示的脉冲周期ST的电流。流量前置放大器部10及加热部25是使对第1电阻体Rl的通电周期性地通断的“通电部”的一实施例。第1电阻体Rl的测定温度Tl是与脉冲周期ST同步而周期性地变动,但通过通电的自发热而稳定为预定的温度。与此相对,第2电阻体R2的测定温度T2呈现固定(与流体21的温度大致相等)。测定时,通过流量前置放大器部10,对第1电阻体Rl及第2电阻体R2分别供给恒电流(图4中例如为ImA,运算部17根据此时检测出的两者的输出信号之差即电阻差,来导出温差测定温度的差分dT。因此,测定温度Tl与T2的差分即温差dT会对应于流体21的流速增减而变化,并不依存于流体21的温度。[0106]另外,实施方式中,是根据第1电阻体Rl及第2电阻体R2的输出信号所表示的电阻差来导出温差,但只要是表示温差的值,则并不限定于电阻差,也可为压降之差或电动势之差。[0107]各脉冲周期内的通电导通高high电平(level及通电断开低(low电平分别呈100mA及ImA。导通的电流值(I00mA是可使第1电阻体R1自发热的值,断开的电流值ImA是用于温度测定的值。[0108]图4中,在将对第1电阻体Rl的通电设为导通的时刻直至温差dT的输出值饱和之前的时刻,导出温差dT。例如,若设图4的脉冲周期ST为大致160msec,则在从通电导通的期间结束后经过预定时间例如经过80msec之时直至140msec为止的时间(大致60msec的期间)内导出温差dT。另外,脉冲周期ST及此预定时间并不限定于这些值,而是依存于装置的特性,例如可通过实验等来获取。[0109]功能结构)[0110]图5及图5B是示意性地表示实施方式的运算部17的用于流量测定的功能结构的图。参照图5㈧,运算部17具备:参数决定部26,使用温差dT与后述的基准关系,来决定与流体种类相应的参数参数值),以进行流量测定;及流量获取部27,使用温差dTm及参数,并依据预定的函数来获取流量。图5⑻示意性地表示流量获取部27为了获取流量所检索的表28。表28被保存在存储部23中。各部的详细将后述。[0111]基准关系)[0112]图6中的〇\至(C是示意性地说明实施方式的使用基准关系的流量导出流程的图。如图6中的A般,根据流体21的种类7K、油等),流量与温差的关系不同,但温差dT与流速U’的相关函数f一般是以〔乔治•金法则〔GeorgeKing’srule来表达,系数a、b及c是根据流体21的种类而定。因此,若要利用同一式来对不同种类的流体换算流量,则有时几乎得不到流量的变化信号。[0113]因此,实施方式中,使用基准关系参照图6中的⑻)来导出流速,所述基准关系规定了温差dT与流速流量之间的关系基准。具体而言,当在图1的状态下按下单触式调整按钮31时,参数决定部26决定所获取的温差dT成为遵循基准关系的目标值d0的、转换参数N的值。参数N在实施方式中,可呈与脉冲周期的脉宽通电导通时间的长度相当的值。通过使用参数N来调整脉宽,即便是不同种类的流体21,也能够使流量与温差dT的相关关系近似于由曲线参照图6中的⑻)所示的基准关系。随后,流量获取部27使用参数N及温差dT并依照相关函数f来算出流量。所算出的流量显示流量Ul与实际流量的关系稍微呈非线性参照图6中的C,但可导出用于表示流量变化的、用于显示于显示部40的显示流量Ul。[0114]另外,实施方式中,参数N的值相当于通电导通时间的长度脉宽),但当脉冲周期为固定时,参数N也可为通电断开时间的长度。[0115]使用参数的流量获取方法)[0116]参照图6中的至C,对不论流体21的种类而导出显示流量Ul的具体方法进行说明。[0117]用户如图1般,对于欲使用热式流量传感器100来判别流量大小的流体21,在流量处于中间(例如最大流量与最小流量的中间)附近的状态下,按压单触式调整按钮31。此时的、脉宽的值被保存在存储部23中。[0118]运算部17的参数决定部26在单触式调整按钮31被按下时,决定用于将温差dT转换为流量的显示流量Ul单位:的参数参变量)。具体而言,使用所检测出的温差dT与目标值d0,以温差dT成为目标值d0的方式,通过d0=dTN来算出参数N的值,并存储到存储部23中。[0119]例如,在将目标值d0设为IOOmV且油1以5Lmin流动的情况case下,根据图6中的㈧,检测出温差dT=约175mV。参数决定部26可根据此温差dT与目标值d0,通过d0=dTN而决定为N=1.74。另外,参数N为0l流体21为油〕的情况下,根据所述式,非线性成分与截距成分将增加,因此如图10中的B〕与图10中的C〕所示,显示流量U2与实际流量不具有比例关系。[0166]与此相对,在单触式调整按钮31被接下时的相对显示模式中,为:的参数N的值被导出并保存在存储部23中。相对显示模式下,单触式调整按钮31被按下后,使用对所检测出的温差dT始终乘以1N倍而得的值即dTN,算出依照相关函数f的显示流量Ul。即,由于以.......................来表示,因此可利用下式而导出。[0167][0168]此处,关于油的特性,在系数m与η大致相等的情况下,参数N、系数m及η成为彼此大致相等的值,即,非线性成分与截距成分极小化,其结果,能够使显示流量Ul与实际流量U的关系接近比例关系参照图6中的⑹)。[0169]另一方面,在m与η不同的情况下,根据ί而导出为::s.对应于系数m与系数η的值之差,N与m的值产生背离〔差)。[0170]热电阻的成分)[0171]所述背离〔差的原因包含钢管3与电阻体〔第1电阻体Rl或第2电阻体R2的接合部处的热电阻。图11是示意性地表示实施方式的钢管3与电阻体的接合部的图。图12是示意性地说明实施方式的温差dT的成分的图。[0172]参照图11,探针4的钢管3是“收容部”的一实施例,所述收容部收容第1电阻体Rl及第2电阻体R2,且构成为可配置于流路中。钢管3具有:金属材料的外周面33,配置于流路配管)中时暴露于流体21中;以及内周面32,为相对于所述外周面33的背面。第1电阻体Rl及第2电阻体R2经由用于通过金属材料来接合的接合部而形成接合于内周面32。[0173]第1电阻体Rl及第2电阻体R2经由槽结构而固定于内周面32。槽结构是从靠近流体21的方向开始依序层叠有钢管3的不锈钢层Wl16Wm·K、镀铜层W2、接合部的焊料层W349Wm·K、背面金属化层W4、作为基板的氧化铝层W536Wm·K及电阻体例如铂层W6而成。如此,为了对电阻体层W6与钢管3进行金属接合,氧化铝基板层W5的背面经金属化加工。而且,对钢管3的内周面32施以镀金属层W2。[0174]如图11所示,温差dT与流速U’的关系是由存在于流体21至电阻体层W6之间的热电阻而定。从流体21直至电阻体的热电阻是支撑层W6的氧化铝基板层W5的热电阻、将层W6与层Wl予以接合的层W3的热电阻、钢管3的热电阻、以及钢管3与流体21之间的热电阻的总和。当流速变大时,流体21与钢管3之间的热传递率增大,钢管与流体21之间的热电阻下降。[0175]流体21与钢管3之间的热传递率根据流量U而变化。流量U与热传递率的关系性根据流体21的种类而不同。另一方面,钢管、焊料及氧化铝基板的各热电阻是不取决于流体21的流量U的固定成分,且不取决于流体21的种类。[0176]另-方面,固定成分会受到钢管3与元件的接合等个体间偏差的影响。对于固定成分的个体间偏差,可通过生产工序内修正来消除,但在操作单触式调整按钮31时所获取的温差dT中,非线性成分有可能增加。因此,理想的是固定成分小。[0177]实施方式中,在接合部中未使用树脂材料等,而使用焊料层W3,从而增大导热率,且通过背面金属化层W4来降低所述固定成分直流成分)。[0178]参照图12,所述温差dT是依存于流体21的种类并根据流量而变化的成分A2、和与流体21无关的固定成分Al之和。例如,若在钢管3与电阻体铂)的接合部中存在热电阻,则会产生不取决于流量的温差成分。其也是不取决于流体种类的成分,对于系数m无帮助。因此,若钢管3与电阻体铂之间的热电阻增加,则系数m与η的背离将变大。为了确保图6中的⑹的比例关系,理想的是如图11中所说明般,极力减小钢管3与电阻体铂之间的热电阻。[0179]实施方式中,通过具备图11的接合部,可减小固定成分Al,从而可维持通过相关函数f来算出流量时的线性图6中的⑹)。[0180]显不例)[0181]图13㈧至图13⑹是表示实施方式的显示例的图。图13A表示以流量的绝对值或相对值来显示单触式调整按钮31被按下前的状态,其中图13A是绝对显示模式下的显示例,显示所测定的实际流量值。图13⑻表示以显示值(100%来显示单触式调整按钮31被按下时的实际流量值的状态。图13C是在单触式调整按钮31被按下后的相对显示模式下,以相对流量的形式显示将图13B的初始流量(100%设为基准的增减变化)比例(单位:%。图13⑹中,通过显示值80%而提示有已从基准流量减少了20%。[0182]实施方式的变形例)[0183]在所述实施方式的另一方面,考虑到对运算部17的M⑶的输入范围(range与精度的权衡tradeoff,将温差dT乘以N倍的方法也可通过动态地变更对第1电阻体Rl供给的电流的脉宽来实现。[0184]图14中的㈧及⑻是对实施方式的变形例进行说明的图。图14中的A及⑻中,虚线的波形表示流体21例如为水时的温差dT的波形,实线表示流体21例如为油时的温差dT的波形。图14中的A中,运算部17检测水的温差dT,并控制加热部25来动态调整脉宽,以使所检测出的温差dT朝箭头AD所示的方向变化,并最终等于目标值dTO。在此种动态脉宽调整中,反复执行运算部17的包含温差dT的检测—加热部25的控制—基于加热信号的脉宽变更的循环loop处理,例如,当脉宽成为w时,温差dT达到目标值dTO。[0185]而且,通过同样的动态调整,在图14中的⑻的油的情况下,反复执行所述的循环处理,例如,当脉宽成为wl时,温差dT达到目标值dTO。[0186]运算部17将所决定的脉宽w或wl换算为系数N,针对每种流体21水、油而导出dTN,并保存到存储部23中。[0187]图15及图15B是对实施方式的变形例中的脉宽变更带来的优点进行说明的图。图15A是每种流体的流量-电压差特性图,图15⑻是单触式调整实施后每种流体的流量-电压差特性图。图15A所示的AD转换部16输出的电压差与流量的特性曲线根据流体21的种类而大为不同。若欲在将特性曲线所示的值输入至运算部17的MCU后乘以N倍,则放大电路的动态dynamic范围将不足,测定精度有可能下降。与此相对,若在如上所述般动态调整脉宽后,MCU导出AD转换部16输出的电压差温差dT,则如图15⑻所示,对于各种流体,可将特性曲线的值收敛在放大电路的范围内。[0188]变形例中,在单触式调整按钮31受到操作后,使脉宽始终变化,以使温差dT保持为固定的目标值dTO。具体而言,预先决定好基准脉宽,参数决定部26将单触式调整按钮31受到操作的时刻的脉宽相对于基准脉宽的比率作为参数导出。之后,流量获取部27使用将脉宽除以所导出的比率所得的值,依照预定的脉宽-流量转换式来算出流量。[0189]此方法与将脉宽固定的情况相比,能够减小温差检测电路的动态范围。而且,由于温差dT为固定,因此不受温差引起的增益gain变动的影响。[0190]另外,图15⑻表示在各介质为5升分钟的状态下,单触式调整按钮31被按下时从AD转换部16输出的温差dT。对于各介质,可将特性曲线收敛在放大电路的预定范围内,从而可维持测定精度。[0191]如此,在变形例中,当对第1电阻体Rl供给脉冲电流时,运算部17的参数决定部26决定参数脉宽比率),所述参数用于将受理单触式调整按钮31被按下的操作内容时所检测出的温差dT转换为目标值dTO。流量获取部27使用依照温差dT的脉宽比率参数),并基于脉宽-流量转换式的预定函数来算出流量。[0192]实施方式的优点)[0193]实施方式中,在相对显示模式下,对于所有种类的流体21显示表示流量大小的相对值。由此,用户可对各种种类的流体21掌握相对的流量信息。[0194]另外,实施方式中,包含第1电阻体Rl及第2电阻体R2的测温部也可具备热电偶而构成。[0195]应认为,此次揭示的实施方式在所有方面仅为例示,并非限制者。本发明的范围是由权利要求而非所述说明所示,且意图包含与权利要求均等的含义及范围内的所有变更。

权利要求:1.一种热式流量计,其特征在于包括:第1电阻体,配置在流体流经的流路中,受到通电而发热,并输出表示发热温度的第1输出信号;第2电阻体,在所述流路中配置在与所述第1电阻体不同的位置,并输出表示所述流体的温度的第2输出信号;通电部,对所述第1电阻体进行通电,以使所述第1输出信号表示预定温度;输出电路,输出基于从所述第1电阻体输出的第1输出信号与从所述第2电阻体输出的第2输出信号之间的差分的与所述流体的流量相关的信号;以及运算部,所述运算部包括:参数决定部,决定参数,所述参数用于将在进行所述通电的情况下受理预定的输入时检测出的所述差分转换为目标值;以及流量获取部,使用所述参数、决定所述参数后检测出的所述差分及预定的函数,来获取所述流量。2.根据权利要求1所述的热式流量计,其特征在于,所述目标值包含遵循基准关系的值,所述基准关系规定了所述差分与流量之间的关系的基准。3.根据权利要求1或2所述的热式流量计,其特征在于,所述通电部使对所述第1电阻体的通电周期性地通断,所述参数包含表示各所述周期内的通电导通或通电断开的时间的值。4.根据权利要求1或2所述的热式流量计,其特征在于,所述流量获取部使用所述差分与所述参数,并依照所述预定的函数来算出所述流量。5.根据权利要求1或2所述的热式流量计,其特征在于,所述热式流量计具备具有所述流量的表,所述流量对应于包含所述差分与所述参数的各组,且是使用所述组的差分与参数并依照所述预定的函数而算出,所述流量获取部基于包含所决定的所述参数及决定所述参数后检测出的所述差分的组,从所述表中读出对应的所述流量。6.根据权利要求1或2所述的热式流量计,其特征在于,所述运算部进而基于从所述第1电阻体输出的第1输出信号与从所述第2电阻体输出的第2输出信号之间的差分,并依照差分与流量的相关函数来算出所述流量。7.根据权利要求1或2所述的热式流量计,其特征在于还包括:收容部,收容所述第1电阻体及所述第2电阻体,且构成为可配置于所述流路,所述收容部具有:金属材料的面,配置于所述流路时暴露于流体中;以及包含金属材料的接合部,用于将所述第1电阻体及所述第2电阻体接合于所述面的背面。8.—种流量处理装置,构成为可连接传感器部,所述传感器部包括:第1电阻体,配置在流体流经的流路中,受到通电而发热,并输出表示发热温度的第1输出信号;以及第2电阻体,在所述流路中配置在与所述第1电阻体不同的位置,并输出表示所述流体的温度的第2输出信号,所述流量处理装置的特征在于包括:通电部,对所述第1电阻体进行通电,以使所述第1输出信号表示预定温度;输出电路,输出基于从所述第1电阻体输出的第1输出信号与从所述第2电阻体输出的第2输出信号之间的差分的与所述流体的流量相关的信号;以及运算部,所述运算部包括:参数决定部,决定一参数,所述参数用于将在进行所述通电的情况下受理预定的输入时检测出的所述差分转换为目标值;以及流量获取部,使用所述参数、决定所述参数后检测出的所述差分及预定的函数,来获取所述流量。9.一种热式流量测量方法,其借助一装置,所述装置包括:第1电阻体,配置在流体流经的流路中,受到通电而发热,并输出表示发热温度的第1输出信号;第2电阻体,在所述流路中配置在与所述第1电阻体不同的位置,并输出表示所述流体的温度的第2输出信号;通电部,对所述第1电阻体进行通电,以使所述第1输出信号表示预定温度;以及输出电路,输出基于从所述第1电阻体输出的第1输出信号与从所述第2电阻体输出的第2输出信号之间的差分的与所述流体的流量相关的信号,所述热式流量测量方法的特征在于包括下述步骤:决定一参数,所述参数用于将在进行所述通电的情况下受理预定的输入时检测出的所述差分转换为目标值;以及使用所述参数、决定所述参数后检测出的所述差分及预定的函数,来获取所述流量。

百度查询: 欧姆龙株式会社 热式流量计、流量处理装置以及热式流量测量方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。

相关技术
相关技术
相关技术
相关技术