买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】一种旋转爆轰发动机数值模拟点火起爆方法_北京理工大学_201810200787.4 

申请/专利权人:北京理工大学

申请日:2018-03-12

公开(公告)日:2021-02-23

公开(公告)号:CN108256275B

主分类号:G06F30/20(20200101)

分类号:G06F30/20(20200101);G06F30/28(20200101);G06F113/08(20200101);G06F119/14(20200101);G06F119/08(20200101)

优先权:

专利状态码:有效-授权

法律状态:2021.02.23#授权;2018.07.31#实质审查的生效;2018.07.06#公开

摘要:本发明公开了一种旋转爆轰发动机数值模拟点火起爆方法,属于燃烧空气动力模拟仿真技术领域。首先进行第一次仿真计算,获得预混气体开始进入旋转爆轰发动机环形燃烧室时的爆轰流场,从中截取包含爆轰波波头和波后预混气体开始进入流场的计算域。之后将截取的计算域作为模拟点火区进行第二次仿真计算,即可获得单向、连续旋转传播的爆轰波。本发明方法与现有方法对比,能够实现环形燃烧室平均直径较小的旋转爆轰发动机的数值模拟点火起爆仿真,获得单向传播的爆轰波,具有更加广泛的适用性,不仅能够对环形燃烧室平均直径较小的旋转爆轰发动机模型进行点火,同样也能够适用于环形燃烧室平均直径较大的旋转爆轰发动机。

主权项:1.一种旋转爆轰发动机数值模拟点火起爆方法,其特征在于包括以下步骤:首先,进行第一次仿真计算,获得预混气体开始进入旋转爆轰发动机环形燃烧室时的爆轰流场,从中截取包含爆轰波波头和波后预混气体开始进入流场的计算域,具体如下:S1:确定旋转爆轰发动机计算模型;模型设置参数包括环形燃烧室的内直径、外直径和轴向长度,以及计算网格的大小、数量;S2:向旋转爆轰发动机环形燃烧室入口端填充预混气体;S3:设置环形燃烧室计算域入口边界、出口边界和上下边界条件;其中,所述入口边界假设有紧密排列的收缩小孔,预混气体通过小孔进入环形燃烧室流场,每个网格的流动情况由该网格的压力决定;所述出口边界分为两种情况:当出口为亚声速时,边界上的压力等于外界背压,其余守恒变量由环形燃烧室流场外推得到;当出口为超声速时,边界上的守恒变量均由环形燃烧室流场外推得到;所述上下边界条件为周期边界,通过对上下边界处网格守恒变量的赋值,来实现爆轰波穿过上边界后从下边界再次进入计算域,从而继续传播;S4:将环形燃烧室计算域的周向边界条件设为固壁条件,紧贴周向边界设置一段高温高压区,包括温度、压力和宽度,其中,高温高压区的宽度与S2中所述预混气体填充宽度相同;S5:开始仿真计算;S6:当爆轰波后有预混气体开始进入环形燃烧室时,停止仿真计算,获得爆轰流场;之后,将截取的计算域作为模拟点火区进行第二次仿真计算,获得单向、连续旋转传播的爆轰波,具体如下:S8:再次向旋转爆轰发动机环形燃烧室入口端填充预混气体;S9:将截取的计算域赋值给旋转爆轰发动机计算模型对应区域,作为模拟点火区;S10:再次设置环形燃烧室计算域入口边界、出口边界和上下边界条件,设置方法与第一次仿真计算时的设置方式相同;S11:将环形燃烧室计算域的周向边界条件设置为周期边界条件;S12:开始仿真计算,即可获得单向、连续旋转传播的爆轰波。

全文数据:一种旋转爆轰发动机数值模拟点火起爆方法技术领域[0001]本发明涉及一种爆轰发动机仿真点火起爆方法,属于燃烧空气动力模拟仿真技术领域。背景技术[0002]发动机是高超声速飞行器的心脏。目前,国内外被广泛研究的爆轰发动机主要有三种:斜爆轰发动机、脉冲爆轰发动机和旋转爆轰发动机。其中,旋转爆轰发动机OtotatingDetonationEngine,RDE是一种基于爆轰燃烧方式的新概念发动机,通过一定手段将燃料压缩并点燃,再通过类似于爆炸那样爆轰波在燃烧室头部沿圆周方向旋转传播,燃烧后的高温高压产物经膨胀几乎沿圆轴方向从另一端高速迅速喷出,从而产生推力。RDE具有一次点火起爆、流量连续、燃烧速度快、热效率高、结构紧凑、工作模式简单等特点,相对于传统的航空发动机具有结构简单、比冲大、成本低等优点,有望带来航空航天推进技术的跨越式发展,近年来受到世界各主要国家的高度关注。[0003]RDE的爆轰方式分为非预混爆轰和预混爆轰,数值模拟大多使用预混爆轰模型。旋转爆轰波一般依靠与燃烧室切向连接的预爆轰管起爆。在涉及燃烧、爆炸爆轰的数值模拟研宄中,对可燃预混气体的点火,通常是采用设置一段高温高压区作为初始点火条件的方法。对类似于管道爆轰这样的问题而言,采用上述方式便能成功点燃预混气体,燃烧波经过不断加速,最终发展为爆轰波。然而,对于旋转爆轰发动机而言,由于爆轰波连续地旋转传播,在数值模拟过程中若设置一段高温高压区点火,因点火区两端充满预混气体,会产生两道反向传播的爆轰波,在传播过程中两道爆轰波不断相遇、碰撞,使得能量不断衰减,导致爆轰波衰减为爆燃波,最终熄灭。[0004]在RDE数值模拟过程中,为获得单向传播的爆轰波,目前有三种方式:第一种,在点火区一端填充一段惰性气体,无法点燃,而另一端为预混气体,能够被点火区点燃,因此能够获得单向传播的爆轰波;第二种,将沿圆周方向的边界条件设置为固壁条件,紧贴此边界设置一段高温高压区点火,其余区域填充预混气体,形成单向传播的爆轰波,等到爆轰波形成并传播一定距离之后,再将周向固壁条件设置为周期边界,爆轰波成功连续传播;第三种,将一维管道爆轰结果截取一段,并拓展为三维结果作为点火区参数,由于此区域存在压力和温度梯度,一端的能量足够点燃预混气体,另一端的能量不足以点燃预混气体,从而形成单向传播的爆轰波。[0005]然而,上述三种方法均具有局限性,对于直径较小的旋转爆轰发动机模型进行数值模拟仿真时,无法获得单向传播的爆轰波。现有点火方式在点火时,点火区温度和压力较高,当旋转爆轰发动机环形燃烧室平均直径较小时,爆轰波传播一周的时间较短,点火区的温度和压力扩散不充分,依然较高,新鲜预混气无法进入燃烧室,导致当爆轰波再次进入流场时,没有充足的新鲜预混气体可供燃烧,因此爆轰波熄灭,旋转爆轰发动机运转失败。此夕卜,在传统点火方式中,预混气体的组成成分燃料和氧化剂种类也会影响旋转爆轰发动机点火的成功率。发明内容[0006]本发明的目的是为了解决在数值模拟仿真过程中,针对环形燃烧室平均直径较小平均直径通常不超过55mm的旋转爆轰发动机无法获得单向传播的爆轰波问题,提出了一种适用性强、成功率高的旋转爆轰发动机数值模拟点火起爆方法。[0007]—种旋转爆轰发动机数值模拟点火起爆方法,技术方案如下:[0008]首先,进行第一次仿真计算,获得预混气体开始进入旋转爆轰发动机环形燃烧室时的爆轰流场,从中截取包含爆轰波波头和波后预混气体开始进入流场的计算域。此时,该计算域的温度、压力等参数己具有正确的梯度分布,点火区末端的预混气体能够顺利进入爆轰流场。[0009]之后,将截取的计算域作为模拟点火区进行第二次仿真计算,从而获得单向、连续旋转传播的爆轰波。[0010]有益效果[0011]本发明方法与现有方法对比,能够实现环形燃烧室平均直径较小的旋转爆轰发动机的数值模拟点火起爆仿真,获得单向传播的爆轰波。本方法具有更加广泛的适用性,不仅能够对环形燃烧室平均直径较小的旋转爆轰发动机模型进行点火,同样也能够适用于环形燃烧室平均直径较大的旋转爆轰发动机。附图说明[0012]图1为本发明方法的流程图。[0013]图2为本发明方法第一次仿真计算停止时的预混气体质量分数分布云图。[0014]图3为本发明方法第二次仿真计算初始条件。[0015]图4为爆轰波稳定传播后的流场温度云图。具体实施方式[0016]下面结合附图对本发明方法的具体实施方式作详细说明。[0017]—种旋转爆轰发动机数值模拟点火起爆方法,如图1所示,包括以下步骤:[0018]步骤一,进行第一次仿真计算,获得预混气体开始进入旋转爆轰发动机环形燃烧室时的爆轰流场。具体方法如下:[0019]S1:确定旋转爆轰发动机计算模型。模型设置参数包括环形燃烧室的内直径、外直径和轴向长度,以及计算网格的大小、数量。其中,所述计算网格大小不超过〇.5mm。[0020]S2:向旋转爆轰发动机环形燃烧室入口端填充预混气体;[0021]S3:设置环形燃烧室计算域入口边界、出口边界和上下边界条件;[0022]其中,所述入口边界假设有紧密排列的收缩小孔,预混气体通过小孔进入环形燃烧室流场,每个网格的流动情况由该网格的压力决定。[0023]所述出口边界分为两种情况:当出口为亚声速时,边界上的压力等于外界背压,其余守恒变量由环形燃烧室流场外推得到;当出口为超声速时,边界上的守恒变量均由环形燃烧室流场外推得到。[0024]所述上下边界条件为周期边界,通过对上下边界处网格守恒变量的赋值,来实现爆轰波穿过上边界后从下边界再次进入计算域,从而继续传播。[0025]S4:将环形燃烧室计算域的周向边界条件设为固壁条件,紧贴周向边界设置一段高温高压区,包括温度、压力和宽度。其中,高温高压区的宽度与S2中所述预混气体填充宽度相同。[0026]S5:开始仿真计算。[0027]S6:当爆轰波后有预混气体开始进入环形燃烧室时,停止仿真计算,获得爆轰流场。此时的预混气体质量分数分布云图如图2所示。[0028]步骤二,从爆轰流场中截取包含爆轰波波头和波后预混气体开始进入流场的计算域。计算域如图2中区域A所示。[0029]所述计算域宽度与环形燃烧室的轴向长度相同,计算域厚度与环形燃烧室厚度内外壁之间的距离相同。[0030]步骤三,将截取的计算域作为模拟点火区进行第二次仿真计算,获得单向、连续旋转传播的爆轰波。具体方法如下:[0031]S8:再次向旋转爆轰发动机环形燃烧室入口端填充预混气体;[0032]S9:将截取的计算域赋值给旋转爆轰发动机计算模型对应区域,作为模拟点火区,如图3所示。[0033]S10:再次设置环形燃烧室计算域入口边界、出口边界和上下边界条件,设置方法与第一次仿真计算时的设置方式相同。[0034]S11:将环形燃烧室计算域的周向边界条件设置为周期边界条件。[0035]S12:开始仿真计算,即可获得单向、连续旋转传播的爆轰波。爆轰波稳定传播后流场温度云图如图4所示。[0036]实施例[0037]—种旋转爆轰发动机数值模拟点火起爆方法,包括以下步骤:[0038]sr:确定旋转爆轰发动机计算模型。模型设置参数包括环形燃烧室的内直径取25mm、外直径取27•5mm,轴向长度取27mm,计算网格尺寸为0•45mm、网格数量为105000。[0039]S2':向旋转爆轰发动机环形燃烧室入口端填充H2Air的预混气体。[0040]S3':设置环形燃烧室计算域入口边界、出口边界和上下边界条件。[0041]S4':将环形燃烧室计算域的周向边界条件设为固壁条件,紧贴周向边界设置一段高温高压区,包括温度、压力和宽度。其中,高温高压区的宽度与S2中所述预混气体填充宽度相同。[0042]S5':开始仿真计算。[0043]S6':当爆轰波后有预混气体开始进入环形燃烧室时,停止仿真计算,获得爆轰流场。[0044]S7':从爆轰流场中截取包含爆轰波波头和波后预混气体开始进入流场的计算域。[0045]S8':再次向旋转爆轰发动机环形燃烧室入口端填充H2Air预混气体。[0046]S9':将截取的计算域赋值给旋转爆轰发动机计算模型对应区域,作为模拟点火区。[0047]S10':再次设置环形燃烧室计算域入口边界、出口边界和上下边界条件,设置方法与第一次仿真计算时的设置方式相同。[0048]Sll':将环形燃烧室计算域的周向边界条件设置为周期边界条件。[0049]S12':开始仿真计算,即可获得单向、连续旋转传播的爆轰波。

权利要求:1.一种旋转爆轰发动机数值模拟点火起爆方法,其特征在于包括以下步骤:首先,进行第一次仿真计算,获得预混气体开始进入旋转爆轰发动机环形燃烧室时的爆轰流场,从中截取包含爆轰波波头和波后预混气体开始进入流场的计算域;之后,将截取的计算域作为模拟点火区进行第二次仿真计算,获得单向、连续旋转传播的爆轰波。2.如权利要求1所述的一种旋转爆轰发动机数值模拟点火起爆方法,其特征在于,第一次仿真计算获取爆轰流场的方法如下:S1:确定旋转爆轰发动机计算模型;模型设置参数包括环形燃烧室的内直径、外直径和轴向长度,以及计算网格的大小、数量;S2:向旋转爆轰发动机环形燃烧室入口端填充预混气体;S3:设置环形燃烧室计算域入口边界、出口边界和上下边界条件;其中,所述入口边界假设有紧密排列的收缩小孔,预混气体通过小孔进入环形燃烧室流场,每个网格的流动情况由该网格的压力决定;所述出口边界分为两种情况:当出口为亚声速时,边界上的压力等于外界背压,其余守恒变量由环形燃烧室流场外推得到;当出口为超声速时,边界上的守恒变量均由环形燃烧室流场外推得到;所述上下边界条件为周期边界,通过对上下边界处网格守恒变量的赋值,来实现爆轰波穿过上边界后从下边界再次进入计算域,从而继续传播;^S4:将环形燃烧室计算域的周向边界条件设为固壁条件,紧贴周向边界设置一段高温高压区,包括温度、压力和宽度,其中,高温高压区的宽度与S2中所述预混气体填充宽度相同;S5:开始仿真计算;S6:当爆轰波后有预混气体开始进入环形燃烧室时,停止仿真计算,获得爆轰流场。3.如权利要求2所述的一种旋转爆轰发动机数值模拟点火起爆方法,其特征在于,其中,所述计算网格大小不超过0.5mm。4.如权利要求1所述的一种旋转爆轰发动机数值模拟点火起爆方法,其特征在于,所述截取的计算域宽度与环形燃烧室的轴向长度相同,计算域厚度与环形燃烧室厚度相同。5.如权利要求1所述的一种旋转爆轰发动机数值模拟点火起爆方法,其特征在于,第二次仿真计算获取爆轰流场的方法如下:S8:再次向旋转爆轰发动机环形燃烧室入口端填充预混气体;S9:将截取的计算域赋值给旋转爆轰发动机计算模型对应区域,作为模拟点火区;S10:再次设置环形燃烧室计算域入口边界、出口边界和上下边界条件,设置方法与第一次仿真计算时的设置方式相同;S11:将环形燃烧室计算域的周向边界条件设置为周期边界条件;S12:开始仿真计算,即可获得单向、连续旋转传播的爆轰波。

百度查询: 北京理工大学 一种旋转爆轰发动机数值模拟点火起爆方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。

相关技术
相关技术
相关技术
相关技术