买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】一种芳基并异硒唑3-酮聚合物/齐聚物及其应用_南京阔华电子科技有限公司_201710654738.3 

申请/专利权人:南京阔华电子科技有限公司

申请日:2017-08-02

公开(公告)日:2021-07-20

公开(公告)号:CN107325267B

主分类号:C08G61/12(20060101)

分类号:C08G61/12(20060101)

优先权:

专利状态码:有效-授权

法律状态:2021.07.20#授权;2018.05.29#实质审查的生效;2017.11.07#公开

摘要:本发明公开了一类芳基并异硒唑3‑酮聚合物齐聚物,用直接芳基化方法制备了一系列全新的、溶液加工性好、有序性好、对空气稳定、电子迁移率高的一类基于芳基并异硒唑3‑酮聚合物齐聚物。把芳基并异硒唑3‑酮引入主链,是为了利用缺电子芳基并异硒唑3‑酮和富电子其他噻吩类单元之间的电子转移,从而把吸收红移到红外以上区域,这样得到了窄带隙、宽波段吸收的黑色聚合物。该类聚合物接受电子能力强,最低未占有轨道LUMO能级很低,低于‑3.8eV;电子传输性较好,电子迁移率超过10‑3cm2Vs。聚合物为黑色,吸光性好,吸收范围覆盖300‑1000nm,带隙1.4eV。

主权项:1.一种芳基并异硒唑3-酮聚合物,其通式如下: ; 其中,n为正整数,聚合物分子量为5000-100000。

全文数据:一种芳基并异砸P坐3-酮聚合物齐聚物及其应用技术领域[0001]本发明属于有机光电领域,具体涉及一种芳基并异硒唑3-酮聚合物齐聚物及其应用。背景技术[0002]目前已商业使用的太阳能电池多为无机太阳能电池,如采用硅或稀有金属合金等无机材料制成的太阳能电池板实现光电转换,虽然无机太阳能电池有高效率、长寿命的优点,但无机半导体材料昂贵,制备工艺复杂,制备过程为高能耗高污染性等因素却始终限制其大规模应用。要使太阳能电池发电得到大规模推广并做到环境友好型制备,就必须找到更廉价的太阳能电池材料。有机太阳能电池是20世纪90年代发展起来的新一代太阳能电池,它由正负电极之间有机聚合物受体和给体材料薄膜异质结或共混在一起形成本体异质结组成¢.Yu.J.Gao,J.C.Hummelen,F.Wudl,A.J.Heeger,“Polymerphotovoltaiccells:enhancedefficienciesviaanetworkofinternaldonor-acceptorheterojunctions”,Science1995,270,1789-1791。与无机太阳能电池相比,有机太阳能电池具有重量轻、低成本、超薄、可溶液加工、制作工艺简单、可制备大面积柔性器件等突出优点,具有非常重要的发展和应用前景,已成为当今新材料和新能源领域最富活力和生机的石开究前沿之一PeiChengandXiaoweiZhan.Stabilityoforganicsolarcells:challengesandstrategies·Chem.Soc·Rev·,2016,45,2544-2582·。美国、日本、澳大利亚、欧洲、中东等国家和地区投入大量的人力和财力,开展了处于国际领先的应用基础研究和开发。我国的南京工业大学、南开大学、华南理工大学、北京大学、清华大学、复旦大学、吉林大学、浙江大学、中科院化学所、中科院理化所、中科院物理所、中科院等离子体所、中科院长春应化所、中科院长春光机物理所等单位也做了一些很好的研究工作。我国的科研人员已经可以制备光电转换效率超过12%的有机太阳能电池(陈永胜等.SoIution-processedorganictandemsolarcellswithpowerconversionefficiencies12%.Nat.Photon.,2017,11,85-90.〇[0003]尽管20年来有机太阳能电池已经取得了长足的发展和进步,但离市场化还有很大的距离,面临的关键问题是光电转换效率、稳定性和寿命。目前实验室阶段世界上固态太阳能电池在白光下最尚能量转换效率已有12%左右,比无机太阳能电池的要低很多,差距很大。从材料角度来分析,光电转换效率低的主要原因有两点:(1有机半导体材料吸收偏窄,包括经典的聚合物材料聚3-己基噻吩在内的绝大部分材料吸收波段在350-650纳米,而太阳光最大光子流在600-800纳米,因此目前常用的有机半导体材料吸收光谱与太阳发射光谱不匹配,太阳光利用率低;(2有机半导体材料的载流子迀移率低,绝大部分常用的材料如P3HT、MEH-PPV和CN-PPV等的迀移率,特别是电子迀移率低于IO-4Cm2V+1s—1,这样激子经电荷分离后产生的载流子不能快速有效地传输到电极形成电流,容易复合。[0004]高载流子迀移率的电子受体对有机太阳能电池非常重要。然而高载流子迀移率的有机材料非常缺乏。在有机太阳能电池中最广泛使用的电子受体要数富勒烯C6q及其衍生物PCBM,它们的电子迀移率较高,但是也有几个弱点:对水、氧分子敏感,因此器件在空气中稳定性差;在可见区吸收很弱,吸收基本在400纳米以下;因其球形结构,使得分子容易聚集,与其他有机材料共混时分相。常用的聚合物受体要数CN-PPV,而它的电子迀移率和吸光性不好(M·Granstrom,K.Petritsch,A.C.Arias,A.Lux,M.R.Andersson,R.H.Friend,“Laminatedfabricationofpolymericphotovoltaicdiodes”,Nature1998,395,257-260。近些年来,也有一些酰亚胺类的小分子及聚合物材料的报道,常用作有机太阳能电池中的电子受体,然而它的吸收只能到红光区,不能吸收红外以上波段的太阳光仏^心!^^-Mende,A.Fechtenkotter,K.Mulien,E.Moons,R.H.Friend,J.D.MacKenzie,uSelf-organizeddiscoticliquidcrystalsforhigh-efficiencyorganicphotovoltaics”,Science2001,293,1119-1122〇发明内容[0005]发明目的:本发明的目的是提供一种芳基并异硒唑3-酮聚合物齐聚物,具有优秀太阳光吸收能力和电子传输能力,可以作为电子受体材料在有机光电器件中应用。[0006]技术方案:本发明所述的芳基并异硒唑3-酮聚合物齐聚物,其特征在于,其通式为如下几个通式中的任意一种:[0007][0008][0009]其中,R为正己基、环己基、正庚基、正辛基、2-乙基己基、正壬基、正葵基、正十-烷基、正十二烷基、2-葵基十四烷基、2,6_二〔异丙基〕苯基、3,4,5_三〔十二烷氧基〕苯基、3,4,5-三〔十二烷氧基〕苄基或1-氰基烷基中的一种;[0010]Y与Y2为噻吩、噻吩衍生物、联二噻吩、联二噻吩衍生物、三并噻吩、三并噻吩衍生物、二并噻吩、二并噻吩衍生物、二噻吩并吡咯、二噻吩并吡咯衍生物、二噻吩并噻咯、二噻吩并噻咯衍生物、二噻吩并苯、二噻吩并苯衍生物、咔唑、咔唑衍生物、N-苯基咔唑、N-乙基咔唑、N-丙基咔唑、N-己基咔唑或N-乙烯基咔唑中的一种;[0011]X为芳香环,η为正整数。[0012]Υ2与Yl的区别是Υ2可含有如下端基:[0014]优选的,所述R为正十二烷基、2葵基十四烷基或3,4,5-三(十二烷氧基)苯基中的一种。[0015]优选的,该聚合物齐聚物的数均分子量为5000-1000000。[0016]优选的,该聚合物齐聚物的数均分子量为5000-100000。[0017]优选的,所述X为苯、萘或蒽。[0018]芳基并异硒唑3-酮聚合物齐聚物作为吸光材料和电子传输材料的应用。[0019]芳基并异硒唑3-酮聚合物齐聚物在有机场效应晶体管中的应用及有机发光二极管中的应用。[0020]本发明用直接芳基化方法制备了一系列全新的、溶液加工性好、有序性好、对空气稳定、电子迀移率高的一类基于芳基并异硒唑3-酮聚合物齐聚物。把芳基并异硒唑3-酮引入主链,是为了利用缺电子芳基并异硒唑3-酮和富电子其他噻吩类单元之间的电子转移,从而把吸收红移到红外以上区域,这样我们得到了窄带隙、宽波段吸收的黑色聚合物。用元素分析、核磁共振表征了聚合物的化学结构,用凝胶渗透色谱测定了它们的分子量,用热重分析和差热分析测试了聚合物的热稳定性,用循环伏安表征了它们的电化学性质,用紫外吸收光谱研究了这些聚合物的光物理性质,用制备的聚合物齐聚物作电子受体和聚噻吩衍生物电子给体共混构筑了有机太阳能电池。实验结果表明这些聚合物齐聚物是综合性能优良的用于有机太阳能电池的电子受体材料。[0021]本发明主要优点在于:[0022]1合成的聚合物溶液加工性好,易溶于氯仿、四氢呋喃和氯苯等有机溶剂。[0023]2合成容易,产率较高,采用直接芳基化反应,避免使用有机硒及丁基锂等高毒性或高易燃易爆性试剂。[0024]3接受电子能力强,最低未占有轨道LUMO能级很低,低于-3.8eV;电子传输性较好,电子迀移率超过10_3cm2Vs〇[0025]4聚合物为黑色,吸光性好,吸收范围覆盖300-1000nm,带隙1.4eV。附图说明[0026]图1为聚合物Pl薄膜紫外一可见-近红外吸收光谱;[0027]图2为聚合物Pl循环伏安曲线;[0028]图3为场效应晶体管IdsIds12_Vgs输出曲线;[0029]图4为场效应晶体管Ids-Vds输出曲线;[0030]图5为聚合物P3HT化学结构;[0031]图6为聚合物P1P3HT1:1共混薄膜吸收光谱;[0032]图7为聚合物P1P3HT1:1共混薄膜IPCE曲线;[0033]图8为聚合物太阳能电池IT0PED0T:PSSP-1:P3HT1:1,wwAl的I-V曲线;[0034]图9为聚合物的热失重曲线。具体实施方式[0035]为了加深对本发明的理解,下面将结合实施例和附图对本发明作进一步详述,该实施例仅用于解释本发明,并不构成对本发明保护范围的限定。[0036]实施例1[0037]聚合物Pl的合成路线:[0038][0039]具体制备方法:[0040]IN-正己基-1,2苯并异硒唑3-酮⑴的制备[0041]2-溴-N-正己基苯甲酰胺(2.84g,IOmmol加入到200mLDMF中,再加入1个当量的碘化亚铜、1.2当量的KSeCN及2.5当量的碳酸铯,此反应液在氮气保护下110°C搅拌3小时。反应液冷却到室温后加入0.IM的氢氧化钠溶液40ml,搅拌30分钟后过滤,滤液用乙酸乙酯萃取三次,水洗2X300mL,无水MgSO4干燥。旋转蒸发除掉溶剂,柱层析分离,用二氯甲烷石油醚(1:1淋洗得红色固体(23g,81·6%。1HNMR500MHz,CDCl3:δ8·08d,J=8·5Hz,1H,7.65d,J=8.3Hz,lH,7.62t,lH,7.46t,J=7.0Hz,lH,3.74t,2H,1·8-1·1m,8H,0.84m,3H.13C匪R300MHz,CDC13:δ167·39,137·76,131·88,128·93,127·52,126.16,123.86,59.53,39.12,31.25,30.62,25.50,15.70.MSESI,283.04calcdforC13H17N0Se,283.05.Anal.CalcdforC13H17N0Se:C,55.32;H,6.07;N,4.96.Found:C,55·30;Η,6·09;Ν,5·01·[0042]2聚{[N-正己基-I,2苯并异硒挫3-酮-I,6-撑]-交替-3,3’-二-十二氧基-2,2’-联噻吩_5,5’-撑}Pl的制备:[0043]在50mL三口瓶中加入单体I0·5mmol,141mg和单体5,5’-二漠_3,3’-二-十二氧基_2,2’-联噻吩0.5mmol,346mg,再加入干燥的四氢呋喃(IOmL,充氮气抽真空三次。在氮气保护下加入赫尔曼催化剂(IOymol,IImg,加热到80°C。此暗红色溶液在80°C搅拌3天后变成粘稠的黑色溶液,冷却到室温,用CH2Cl22X150mL萃取,水洗(2X300mL,无水MgS〇4干燥。浓缩到5mL,滴入IOOmL甲醇,过滤,得黑色固体(350mg,86%。1HNMR300MHz,CDCl3:8.06br,lH,7.63br,2H,7.46br,lH,7·13br,2H,3·74br,2H,1.8-1.1m,28H,0.84m,9H.Anal.CalcdforC45H67N2O3S2Se:C,66.47;H,8.31;N,1.72.Found:C,65.50;Η,8.53;Ν,2.14.Μν,15000;PDI,1.5.UVCHCl3,Amax£max:3172.49XIO4,3593.33X104,6491.39父10411111111〇1九cm-9。起始热分解温度410°C,玻璃化转变温度215°C。该聚合物的薄膜吸收能覆盖250-1000nm见图1。[0044]电化学性质[0045]电化学循环伏安(CV实验在计算机控制的EGGPotentiostatGalvanostatModel283伏安分析仪上完成,采用三电极体系,将聚合物涂在铂电极上作为工作电极,AgAg+为参比电极,铂丝为对电极,无水乙腈做溶剂,(C4H94NPF6为支持电解质。聚合物P-I的CV曲线见图2。按照文献方法(Pommerehne,J·;Vestweber,H·;Guss,W·;Mahrt,R·F·;Bassler,H.;Porsch,M.;Daub,J.Adv.Mater.1995,7,551,用二茂铁FC作基准可计算它的LUMO能级。Pl的LUMO能级为-3.8eV,与有机太阳能电池中最好的受体材料PCBM-3.7eV相当,因此它们是很好的电子受体材料。[0046]电子传输性能[0047]我们用聚合物Pl制备了场效应晶体管,并测量了它的电子迀移率见图3和4,电子场效应迀移率达0.01cm2Vs,是目前溶液加工的无定型聚合物电子迀移率最高值之一,说明该类聚合物具有很好的电子传输性能。[0048]光伏性质[0049]我们用透明的导电玻璃ITO作阳极,在空气中稳定的铝作阴极,聚合物P-I为电子受体,聚合物P3HT见图5为电子给体,P1P3HT1:1共混物作光活性层制备了全聚合物太阳能电池。图6给出了共混薄膜的吸收光谱,能覆盖300-1000nm。图7给出了器件的IPCE响应曲线,最高外量子效率达44%。图8给出了器件的电流-电压曲线,器件在未优化的情况下在模拟太阳光AM1.5,IOOmWcm2下光电能量转换效率超过8%,与文献报道的最好的全聚合物太阳能电池相当,说明这类聚合物是理想的有机太阳能电池电子受体材料。[0050]以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

权利要求:1.一种芳基并异硒唑3-酮聚合物齐聚物,其特征在于,其通式为如下几个通式中的任意一种:其中,R为正己基、环己基、正庚基、正辛基、2-乙基己基、正壬基、正葵基、正^^一烷基、正十二烷基、2-葵基十四烷基、2,6-二异丙基苯基、3,4,5-三十二烷氧基苯基、3,4,5-三十二烷氧基苄基或1-氰基烷基中的一种;Y与Y2为噻吩、噻吩衍生物、联二噻吩、联二噻吩衍生物、三并噻吩、三并噻吩衍生物、二并噻吩、二并噻吩衍生物、二噻吩并吡咯、二噻吩并吡咯衍生物、二噻吩并噻咯、二噻吩并噻咯衍生物、二噻吩并苯、二噻吩并苯衍生物、咔唑、咔唑衍生物、N-苯基咔唑、N-乙基咔唑、N-丙基咔唑、N-己基咔唑或N-乙烯基咔唑中的一种;X为芳香环,η为正整数。2.根据权利要求1所述的芳基并异硒唑3-酮聚合物齐聚物,其特征在于,所述R为正十二烷基、2-葵基十四烷基或3,4,5-三十二烷氧基苯基中的一种。3.根据权利要求1所述的芳基并异硒唑3-酮聚合物齐聚物,其特征在于,该聚合物齐聚物的数均分子量为5000-1000000。4.根据权利要求3所述的芳基并异硒唑3-酮聚合物齐聚物,其特征在于,该聚合物齐聚物的数均分子量为5000-100000。5.根据权利要求1所述的芳基并异硒唑3-酮聚合物齐聚物,其特征在于,所述X为苯、萘或蒽。6.根据权利要求1-5任意一项芳基并异硒唑3-酮聚合物齐聚物作为吸光材料和电子传输材料的应用。7.根据权利要求1-5任意一项芳基并异硒唑3-酮聚合物齐聚物在有机场效应晶体管中的应用及有机发光二极管中的应用。

百度查询: 南京阔华电子科技有限公司 一种芳基并异硒唑3-酮聚合物/齐聚物及其应用

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。

-相关技术