买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】基于特征分析的阵列雷达目标检测方法_西安电子科技大学_201910075786.6 

申请/专利权人:西安电子科技大学

申请日:2019-01-25

公开(公告)日:2022-12-02

公开(公告)号:CN109633598B

主分类号:G01S7/41

分类号:G01S7/41

优先权:

专利状态码:有效-授权

法律状态:2022.12.02#授权;2019.05.10#实质审查的生效;2019.04.16#公开

摘要:本发明提出了一种基于特征分析的阵列雷达目标检测方法,用于解决现有技术中存在的虚警概率较高的技术问题,实现步骤包括:对阵列雷达各通道的回波信号进行脉冲压缩;对脉冲压缩回波信号进行动目标检测;获取点迹信息集合;对点迹信息集合进行波束扫描;提取波束扫描方向图集合的特征参数集合;采用特征分析方法获取真实目标点迹信息。本发明对点迹信息波束扫描方向图的特征参数进行特征分析,能够准确获取真实目标点迹信息,降低目标检测后的虚假目标点迹个数,进而降低虚警概率,提高目标检测性能。

主权项:1.一种基于特征分析的阵列雷达目标检测方法,其特征在于,包括如下步骤:1对阵列雷达各通道的回波信号进行脉冲压缩:对阵列雷达N个通道的雷达回波信号分别进行脉冲压缩,得到N组脉冲压缩回波信号,N≥2且N为正整数;2对脉冲压缩回波信号进行动目标检测:对每组脉冲压缩回波信号进行动目标检测,得到动目标检测数据矩阵集合sr,v,sr,v={s1r,v,s2r,v,…,snr,v,…,sNr,v},其中: 其中,snr,v表示距离单元维大小为r、多普勒通道号维大小为v的第n组动目标检测数据矩阵,n≤N且n为正整数,r≥2且r为正整数,v≥2且v为正整数,sn,x,y表示snr,v中第x个距离单元第y个多普勒通道号上的幅相信息,x≤r且x为正整数,y≤v且y为正整数;3获取点迹信息集合I:对每组动目标检测数据矩阵snr,v进行恒虚警检测,得到每组包括多个距离单元和多普勒通道号的N组点迹信息,并对N组点迹信息进行点迹凝聚,得到点迹信息集合I,I={I1,I2,…,Im,…,IM},其中,Im表示第m个点迹信息,M为点迹信息的总数,M≥1且M为正整数;4对点迹信息集合I进行波束扫描:4a将每一个点迹信息Im的距离单元和多普勒通道号与sr,v包含的每个动目标检测数据矩阵按顺序进行组合,得到大小为M×N的阵列矢量集合WN,WN={W1N,W2N,…,WmN,…,WMN},其中,WmN表示第m个点迹信息Im对应的由N个幅相信息组成的大小为1×N的阵列矢量;4b根据阵列矢量集合WN,计算每个点迹信息Im的波束扫描方向图Pmθ,得到波束扫描方向图集合Pθ,Pθ={P1θ,P2θ,…,Pmθ,…,PMθ},其中,θ为波束扫描方向图Pmθ的扫描角度;5提取波束扫描方向图集合Pθ的特征参数集合T:5a将Pθ中每个波束扫描方向图Pmθ的-3dB主瓣波束宽度作为Pmθ的主瓣宽度αm,将Pmθ的最大值作为主瓣峰值C0m,将Pmθ主瓣峰值左边第一个极大值点的幅度值作为第一左副瓣峰值C1m,将Pmθ主瓣峰值右边第一个极大值点的幅度值作为第一右副瓣峰值C2m;5b将每个波束扫描方向图Pmθ的主瓣宽度αm、主瓣峰值C0m、第一左副瓣峰值C1m和第一右副瓣峰值C2m进行组合,得到Pθ的特征参数集合T,T={T1,T2,…,Tm,…,TM},其中,Tm表示波束扫描方向图Pmθ的特征参数,6采用特征分析方法获取真实目标点迹信息:6a计算每个波束扫描方向图Pmθ的主瓣宽度αm与理论值的相对误差εm,得到Pθ的主瓣宽度与理论值的相对误差集合ε,ε={ε1,ε2,…,εm,…,εM},其中: 其中,α0为阵列雷达波束方向图主瓣宽度理论值;6b计算每个波束扫描方向图Pmθ的主瓣峰值C0m与第一左副瓣峰值C1m的幅度比β1m,以及与第一右副瓣峰值C2m的幅度比得到Pθ的主瓣峰值与第一左副瓣峰值幅度比集合β1,以及主瓣峰值与第一右副瓣峰值幅度比集合β2,其中: 6c计算每个波束扫描方向图Pmθ的最大主瓣第一副瓣比以及最小主瓣第一副瓣比其中max{·,·}表示两元素取大,min{·,·}表示两元素取小,得到Pθ的最大主瓣第一副瓣比集合βmax,以及最小主瓣第一副瓣比集合βmin,6d将满足以下三个条件的点迹信息作为真实目标点迹信息: 其中,ε0表示最大能容忍的最大主瓣宽度相对误差限,β4和β3均表示最大能容忍的主副瓣比门限,且β4≥β3。

全文数据:基于特征分析的阵列雷达目标检测方法技术领域本发明属于雷达信号处理技术领域,涉及一种阵列雷达目标检测方法,特别涉及一种基于特征分析的阵列雷达目标检测方法,可用于阵列雷达目标检测。背景技术近年来,阵列雷达成为业界研究的热点,这种体制雷达采用数字波束形成技术,采用窄带信号模型,从不同方向传播到各阵元的信号具有不同的相位特征。利用阵列信号的这些特征,可以对回波信号进行目标检测、参数估计、跟踪与识别等。目标检测是雷达信号处理的重要环节,衡量目标检测性能的指标包括虚警概率、测速精度、测距精度等,目标检测后的目标点迹最终都要在雷达显示界面显示,目标航迹清晰完整意味着目标检测性能好,这就要求虚假目标点迹个数少且真实目标点迹完整,而虚警概率的两个表征因素就是虚假目标点迹个数和真实目标点迹个数,故虚警概率是衡量目标检测性能的重要指标,通过降低虚警概率来提升检测性能是目标检测的重要研究方向。在对阵列雷达进行目标检测时,由于雷达接收机内部噪声电平因模拟器件的影响而有时变特性,杂波和干扰量也有时变特性,且在空域分布不均匀,给目标检测带来了很大的难题。目前阵列雷达多采用各种恒虚警检测方法对目标进行检测,从不同的角度得到检测单元处杂波背景的均值估计,进而得到检测单元的检测门限,通过比较检测单元的幅度值和检测门限来检测目标。但采用各种恒虚警检测方法对特定目标进行检测,尤其是对微弱目标进行检测时虚假目标点迹个数多,真实目标点迹包含在众多虚假点迹中,故虚警概率高,目标检测性能难以提升。例如,申请公布号为CN105425225A,名称为“一种被动雷达低空目标检测方法”的专利申请,公开了一种被动雷达低空目标检测方法,该方法通过安装圆形被动接收雷达天线阵列,接收低空慢速目标反射的OFDM通信信号,对回波信号进行脉冲压缩,实现目标与阵列距离的探测,然后通过恒虚警检测模块,完成低信噪比和强干扰下的微弱目标检测,最后通过提取检测到的微弱目标的速度,对有潜在威胁的低空目标进行判断和提前预警。但其恒虚警检测中仍然用噪声功率估计设定检测门限,且用目标速度无法区分虚假目标和微弱目标,虚假目标点迹个数不会减少,导致虚警概率较高。发明内容本发明的目的在于克服上述现有技术存在的缺陷,提供一种基于特征分析的阵列雷达目标检测方法,用于解决现有技术中存在的虚警概率较高的技术问题。本发明的主要思路是:获取阵列雷达的点迹信息集合,提取每个点迹信息波束扫描方向图的特征参数,用特征分析的方法获取真实目标点迹信息,具体实现步骤包括:1对阵列雷达各通道的回波信号进行脉冲压缩:对阵列雷达N个通道的雷达回波信号分别进行脉冲压缩,得到N组脉冲压缩回波信号,N≥2且N为正整数;2对脉冲压缩回波信号进行动目标检测:对每组脉冲压缩回波信号进行动目标检测,得到动目标检测数据矩阵集合sr,v,sr,v={s1r,v,s2r,v,…,snr,v,…,sNr,v},其中:其中,snr,v表示距离单元维大小为r、多普勒通道号维大小为v的第n组动目标检测数据矩阵,n≤N且n为正整数,r≥2且r为正整数,v≥2且v为正整数,sn,x,y表示snr,v中第x个距离单元第y个多普勒通道号上的幅相信息,x≤r且x为正整数,y≤v且y为正整数;3获取点迹信息集合I:对每组动目标检测数据矩阵snr,v进行恒虚警检测,得到每组包括多个距离单元和多普勒通道号的N组点迹信息,并对N组点迹信息进行点迹凝聚,得到点迹信息集合I,I={I1,I2,…,Im,…,IM},其中,Im表示第m个点迹信息,M为点迹信息的总数,M≥1且M为正整数;4对点迹信息集合I进行波束扫描:4a将每一个点迹信息Im的距离单元和多普勒通道号与sr,v包含的每个动目标检测数据矩阵按顺序进行组合,得到大小为M×N的阵列矢量集合WN,WN={W1N,W2N,…,WmN,…,WMN},其中,WmN表示第m个点迹信息Im对应的由N个幅相信息组成的大小为1×N的阵列矢量;4b根据阵列矢量集合WN,计算每个点迹信息Im的波束扫描方向图Pmθ,得到波束扫描方向图集合Pθ,Pθ={P1θ,P2θ,…,Pmθ,…,PMθ},其中,θ为波束扫描方向图Pmθ的扫描角度;5提取波束扫描方向图集合Pθ的特征参数集合T:5a将Pθ中每个波束扫描方向图Pmθ的-3dB主瓣波束宽度作为Pmθ的主瓣宽度αm,将Pmθ的最大值作为主瓣峰值C0m,将Pmθ主瓣峰值左边第一个极大值点的幅度值作为第一左副瓣峰值C1m,将Pmθ主瓣峰值右边第一个极大值点的幅度值作为第一右副瓣峰值C2m;5b将每个波束扫描方向图Pmθ的主瓣宽度αm、主瓣峰值C0m、第一左副瓣峰值C1m和第一右副瓣峰值C2m进行组合,得到Pθ的特征参数集合T,T={T1,T2,…,Tm,…,TM},其中,Tm表示波束扫描方向图Pmθ的特征参数,6采用特征分析方法获取真实目标点迹信息:6a计算每个波束扫描方向图Pmθ的主瓣宽度αm与理论值的相对误差εm,得到Pθ的主瓣宽度与理论值的相对误差集合ε,ε={ε1,ε2,…,εm,…,εM},其中:其中,α0为阵列雷达波束方向图主瓣宽度理论值;6b计算每个波束扫描方向图Pmθ的主瓣峰值C0m与第一左副瓣峰值C1m的幅度比以及与第一右副瓣峰值C2m的幅度比得到Pθ的主瓣峰值与第一左副瓣峰值幅度比集合β1,以及主瓣峰值与第一右副瓣峰值幅度比集合β2,其中:6c计算每个波束扫描方向图Pmθ的最大主瓣第一副瓣比以及最小主瓣第一副瓣比其中max{·,·}表示两元素取大,min{·,·}表示两元素取小,得到Pθ的最大主瓣第一副瓣比集合βmax,以及最小主瓣第一副瓣比集合βmin,6d将满足以下三个条件的点迹信息作为真实目标点迹信息:其中,ε0表示最大能容忍的最大主瓣宽度相对误差限,β4和β3均表示最大能容忍的主副瓣比门限,且β4≥β3;本发明与现有技术相比,具有以下优点:由于本发明通过求取每个点迹信息波束扫描方向图的特征参数,把主瓣宽度与理论值的相对误差、最大主瓣第一副瓣比、最小主瓣第一副瓣比三个特征参数与真实目标特征参数进行对比,用特征分析方法获取真实目标点迹信息,解决了现有目标检测方法因虚假目标点迹个数多带来的虚警概率高的问题,能够准确获取真实目标点迹信息,降低目标检测后的虚假目标点迹个数,进而降低虚警概率,提高目标检测性能。附图说明图1为本发明的实现流程图;图2是本发明真实目标点迹信息和虚假目标点迹信息的波束扫描方向图对比图;图3为本发明和现有技术进行目标检测后的点迹显示界面对比图。具体实施方式下面结合附图和具体实施例,对本发明进行进一步详细描述:参照图1,一种基于特征分析的阵列雷达目标检测方法,包括如下步骤:步骤1对阵列雷达各通道的回波信号进行脉冲压缩:在本实施例中设置的阵列雷达采用线性调频连续波信号体制,采用的天线阵列是包含16个天线阵元的弧面共形阵,弧面共形阵半径为30cm,张角为120°,16个阵元均匀等间隔分布在弧面上,相邻阵元与弧心连线的夹角为8°,阵列法线方向为90°。对阵列雷达16个通道的雷达回波信号分别进行脉冲压缩,得到16组脉冲压缩回波信号,该体制雷达脉冲压缩相当于对每个脉冲重复周期的雷达回波信号做快速傅里叶变换,即可得到16组脉冲压缩回波信号。步骤2对脉冲压缩回波信号进行动目标检测:对每组脉冲压缩回波信号进行动目标检测,得到动目标检测数据矩阵集合sr,v,sr,v={s1r,v,s2r,v,…,snr,v,…,sNr,v},其中:其中,snr,v表示距离单元维大小为r=500、多普勒通道号维大小为v=1024的第n组动目标检测数据矩阵,n≤16且n为正整数,sn,x,y表示snr,v中第x个距离单元第y个多普勒通道号上的幅相信息,x≤500且x为正整数,y≤1024且y为正整数。在本实施例中,动目标检测的方法采用慢时间域快速傅里叶变换的方法,即对脉冲压缩回波信号在每个距离单元的慢时间域做1024点快速傅里叶变换,得到每个距离单元在1024个多普勒通道号上的幅相信息。步骤3获取点迹信息集合I:对每组动目标检测数据矩阵snr,v进行恒虚警检测,得到每组包括多个距离单元和多普勒通道号的16组点迹信息,并对16组点迹信息进行点迹凝聚,得到点迹信息集合I,I={I1,I2,…,Im,…,IM},其中,Im表示第m个点迹信息,M为点迹信息的总数,M≥1且M为正整数;在本实施例中,采用单元平均恒虚警检测的方法,设置保护单元为2,虚警概率设置为10-6,考虑到噪声估计要准确可靠且复杂度要在合理的范围内,故参考单元个数为16,这样16组动目标检测数据矩阵snr,v用单元平均恒虚警检测的方法,可以得到16组点迹信息,这16组点迹信息的个数不尽相同;本实施例中,点迹凝聚采用的方法是,把16组点迹信息中多普勒通道号和距离单元相同的点迹信息合并为1个点迹信息输出,其它点迹信息直接输出,这样就可以得到点迹凝聚后的M个点迹信息。步骤4对点迹信息集合I进行波束扫描:步骤4a将每一个点迹信息Im的距离单元和多普勒通道号与sr,v包含的每个动目标检测数据矩阵按顺序进行组合,得到大小为M×16的阵列矢量集合WN,WN={W1N,W2N,…,WmN,…,WMN},其中,WmN表示第m个点迹信息Im对应的由16个幅相信息组成的大小为1×16的阵列矢量;步骤4b根据阵列矢量集合WN,计算每个点迹信息Im的波束扫描方向图Pmθ,得到波束扫描方向图集合Pθ,Pθ={P1θ,P2θ,…,Pmθ,…,PMθ},其中,θ为波束扫描方向图Pmθ的扫描角度;Pmθ=|WmNaθ|其中,aθ表示大小为N×D的阵列导向矢量,θ表示波束扫描方向图Pmθ的扫描角度,D表示扫描角度θ的个数,WN表示阵列矢量集合,在本实施例中,D=700,θ∈[75°,105°];步骤5提取波束扫描方向图集合Pθ的特征参数集合T:步骤5a将Pθ中每个波束扫描方向图Pmθ的-3dB主瓣波束宽度作为Pmθ的主瓣宽度αm,将Pmθ的最大值作为主瓣峰值C0m,将Pmθ主瓣峰值左边第一个极大值点的幅度值作为第一左副瓣峰值C1m,将Pmθ主瓣峰值右边第一个极大值点的幅度值作为第一右副瓣峰值C2m;步骤5b将每个波束扫描方向图Pmθ的主瓣宽度αm、主瓣峰值C0m、第一左副瓣峰值C1m和第一右副瓣峰值C2m进行组合,得到Pθ的特征参数集合T,T={T1,T2,…,Tm,…,TM},其中,Tm表示第m个波束扫描方向图的特征参数,步骤6采用特征分析方法获取真实目标点迹信息:步骤6a计算每个波束扫描方向图Pmθ的主瓣宽度αm与理论值的相对误差εm,得到Pθ的主瓣宽度与理论值的相对误差集合ε,ε={ε1,ε2,…,εm,…,εM},其中:其中,α0为阵列雷达波束方向图主瓣宽度理论值;步骤6b计算每个波束扫描方向图Pmθ的主瓣峰值C0m与第一左副瓣峰值C1m的幅度比以及与第一右副瓣峰值C2m的幅度比得到Pθ的主瓣峰值与第一左副瓣峰值幅度比集合β1,以及主瓣峰值与第一右副瓣峰值幅度比集合β2,其中:步骤6c计算每个波束扫描方向图Pmθ的最大主瓣第一副瓣比以及最小主瓣第一副瓣比其中max{·,·}表示两元素取大,min{·,·}表示两元素取小,得到Pθ的最大主瓣第一副瓣比集合βmax,以及最小主瓣第一副瓣比集合βmin,步骤6d将满足以下三个条件的点迹信息作为真实目标点迹信息,不满足以下三个条件的点迹信息作为虚假目标点迹信息:其中,ε0表示最大能容忍的最大主瓣宽度相对误差限,β4和β3均表示最大能容忍的主副瓣比门限,且β4≥β3;在本实施例中,取ε0=0.2,β4=3.1626归一化副瓣电平-10dB,β3=1.7784归一化副瓣电平-5dB;通过对每个点迹信息的波束扫描方向图进行特征分析,为了解释真实目标点迹和虚假目标点迹信息的区别,把满足步骤6d中三个条件的一个点迹信息的波束扫描方向图作为真实目标点迹信息的波束扫描方向图,如图2a所示;把不满足步骤6d中三个条件的一个点迹信息的波束扫描方向图作为虚假目标点迹信息的波束扫描方向图,如图2b所示;图2中两幅子图的横坐标表示扫描角度度,纵坐标表示扫描角度对应的波束扫描方向图幅度值dB,两幅子图中幅度值最大点对应的扫描角度是目标角度。从图2a可以看出,真实目标回波信号和阵列流形相关,故真实目标点迹信息的波束扫描图具有良好的方向性,从图中计算出该点迹信息的三个特征参数ε1=0.14、满足步骤6d中的三个条件,即该图中表示的点迹信息的特征参数能够与特征分析方法中的真实目标特征参数匹配,故该目标回波信号相位特征能够与阵列流形匹配,满足真实目标特征,故把该点迹信息作为真实目标点迹信息;从图2b可以看出,虚假目标是噪声虚警点带来的,非外部目标回波产生,故虚假目标点迹信息的波束扫描图不具有良好的方向性,与真实目标点迹信息的波束扫描方向图特征差异较大,从图中计算出该点迹信息三个特征参数ε2=0.25、不满足步骤6d中的三个条件,故该点迹信息的特征参数不能与特征分析方法中的真实目标特征参数匹配,没有经过阵列结构调制,和目标特征相悖,故该点迹信息为虚假目标点迹信息。以下结合仿真实验,对本发明的技术效果作进一步说明:1、仿真条件和内容:仿真条件:MATLABR2017a,IntelRCoreTMi7-6700KCPU4.00GHz,Windows10Pro。阵列雷达放置于楼顶,用大疆4A无人机作为目标,沿阵列法线方向以均匀速度,远离雷达直线飞行,飞行高度与阵列雷达发射天线相对于地面的高度一致,飞行约9个距离单元,采集实测数据,数据中的雷达回波信号包含无人机目标信号和噪声信号。仿真内容:利用本发明、现有恒虚警检测方法对包含无人机目标的回波信号进行目标检测,其结果如图3所示。2、仿真结果分析:参考图3,其中:图3a表示采用现有恒虚警检测方法进行目标检测后的点迹显示界面图;图3b表示采用本发明得到的进行目标检测后的点迹显示界面图;图3中两幅子图采用极坐标形式,极径表示距离单元,极角表示角度,阵列雷达位置位于极心处,“米”字符号所在位置表示点迹位置。从图3a可以看出,采用现有恒虚警检测方法进行目标检测的点迹分布在第5距离单元到第21距离单元之间,这些点迹的角度分布在60°到120°之间,分布散乱,而无人机飞行方向沿着阵列法线方向,故无人机点迹应该始终保持在90°左右,故这些点迹中有很多虚假点迹,无人机飞行点迹夹杂在虚假点迹之间,难以分辨真实无人机航迹;从图3b可以看出,采用本发明进行目标检测得到的点迹显示界面图中,点迹基本沿着角度85°成直线排布,分布在第10到第17距离单元上,在距离和角度上与无人机目标的真实航迹基本一致,可以体现无人机真实航迹,但距离单元为10、角度为80°处出现的点迹和无人机航迹背离,故该点迹是唯一一个虚假点迹,虚假点迹个数变少而真实目标点迹个数基本不变,故虚警概率降低,无人机的真实航迹能够清晰显现出来。综上所述,本发明提出的一种基于特征分析的阵列雷达目标检测方法,与现有方法相比可以降低虚警概率,提升目标检测性能。

权利要求:1.一种基于特征分析的阵列雷达目标检测方法,其特征在于,包括如下步骤:1对阵列雷达各通道的回波信号进行脉冲压缩:对阵列雷达N个通道的雷达回波信号分别进行脉冲压缩,得到N组脉冲压缩回波信号,N≥2且N为正整数;2对脉冲压缩回波信号进行动目标检测:对每组脉冲压缩回波信号进行动目标检测,得到动目标检测数据矩阵集合sr,v,sr,v={s1r,v,s2r,v,…,snr,v,…,sNr,v},其中:其中,snr,v表示距离单元维大小为r、多普勒通道号维大小为v的第n组动目标检测数据矩阵,n≤N且n为正整数,r≥2且r为正整数,v≥2且v为正整数,sn,x,y表示snr,v中第x个距离单元第y个多普勒通道号上的幅相信息,x≤r且x为正整数,y≤v且y为正整数;3获取点迹信息集合I:对每组动目标检测数据矩阵snr,v进行恒虚警检测,得到每组包括多个距离单元和多普勒通道号的N组点迹信息,并对N组点迹信息进行点迹凝聚,得到点迹信息集合I,I={I1,I2,…,Im,…,IM},其中,Im表示第m个点迹信息,M为点迹信息的总数,M≥1且M为正整数;4对点迹信息集合I进行波束扫描:4a将每一个点迹信息Im的距离单元和多普勒通道号与sr,v包含的每个动目标检测数据矩阵按顺序进行组合,得到大小为M×N的阵列矢量集合WN,WN={W1N,W2N,…,WmN,…,WMN},其中,WmN表示第m个点迹信息Im对应的由N个幅相信息组成的大小为1×N的阵列矢量;4b根据阵列矢量集合WN,计算每个点迹信息Im的波束扫描方向图Pmθ,得到波束扫描方向图集合Pθ,Pθ={P1θ,P2θ,…,Pmθ,…,PMθ},其中,θ为波束扫描方向图Pmθ的扫描角度;5提取波束扫描方向图集合Pθ的特征参数集合T:5a将Pθ中每个波束扫描方向图Pmθ的-3dB主瓣波束宽度作为Pmθ的主瓣宽度αm,将Pmθ的最大值作为主瓣峰值C0m,将Pmθ主瓣峰值左边第一个极大值点的幅度值作为第一左副瓣峰值C1m,将Pmθ主瓣峰值右边第一个极大值点的幅度值作为第一右副瓣峰值C2m;5b将每个波束扫描方向图Pmθ的主瓣宽度αm、主瓣峰值C0m、第一左副瓣峰值C1m和第一右副瓣峰值C2m进行组合,得到Pθ的特征参数集合T,T={T1,T2,…,Tm,…,TM},其中,Tm表示波束扫描方向图Pmθ的特征参数,6采用特征分析方法获取真实目标点迹信息:6a计算每个波束扫描方向图Pmθ的主瓣宽度αm与理论值的相对误差εm,得到Pθ的主瓣宽度与理论值的相对误差集合ε,ε={ε1,ε2,…,εm,…,εM},其中:其中,α0为阵列雷达波束方向图主瓣宽度理论值;6b计算每个波束扫描方向图Pmθ的主瓣峰值C0m与第一左副瓣峰值C1m的幅度比β1m,以及与第一右副瓣峰值C2m的幅度比得到Pθ的主瓣峰值与第一左副瓣峰值幅度比集合β1,以及主瓣峰值与第一右副瓣峰值幅度比集合β2,其中:6c计算每个波束扫描方向图Pmθ的最大主瓣第一副瓣比以及最小主瓣第一副瓣比其中max{·,·}表示两元素取大,min{·,·}表示两元素取小,得到Pθ的最大主瓣第一副瓣比集合βmax,以及最小主瓣第一副瓣比集合βmin,6d将满足以下三个条件的点迹信息作为真实目标点迹信息:其中,ε0表示最大能容忍的最大主瓣宽度相对误差限,β4和β3均表示最大能容忍的主副瓣比门限,且β4≥β3。2.根据权利要求1所述的基于特征分析的阵列雷达目标检测方法,其特征在于,步骤4b中所述的计算每个点迹信息Im的波束扫描方向图Pmθ,计算公式为:Pmθ=|WmNaθ|其中,aθ表示大小为N×D的阵列导向矢量,θ表示波束扫描方向图Pmθ的扫描角度,D表示扫描角度θ的个数,WN表示阵列矢量集合。

百度查询: 西安电子科技大学 基于特征分析的阵列雷达目标检测方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。