买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】一种组织均匀TNM合金锻坯的制备方法_西北工业大学_201910214268.8 

申请/专利权人:西北工业大学

申请日:2019-03-20

公开(公告)日:2020-11-03

公开(公告)号:CN109909409B

主分类号:B21J5/00(20060101)

分类号:B21J5/00(20060101);B21J1/06(20060101);B21K29/00(20060101);C22F1/18(20060101)

优先权:

专利状态码:有效-授权

法律状态:2020.11.03#授权;2019.07.16#实质审查的生效;2019.06.21#公开

摘要:一种组织均匀TNM合金锻坯的制备方法,采用“少量多次”的锻造方法以避免TNM合金锻造过程中的开裂现象,同时,在道次间保温充足时间,充分利用锻后热处理过程中的亚动态再结晶现象,提高了锻坯各部位组织均匀性,得到组织细小、均匀的TNM合金锻坯。本发明采用的是非等温锻造,且锻造温度较低,能够有效提高经济效益;并且本发明每个道次的变形参数以及热处理参数相同,操作简单。

主权项:1.一种组织均匀TNM合金锻坯的制备方法,其特征在于,具体过程如下:第一步,锻前准备;所述的锻前准备包括待压铸锭表面打磨、超声波探伤、待压铸锭表面均匀涂敷Y2O3浆料,以及对待压铸锭进行包套;第二步,加热铸锭;将经过包套的铸锭放入电阻炉中,使该铸锭以10℃min的速率随炉升温至1100℃~1170℃;保温2h,使该铸锭温度与电阻炉温度一致;第三步,制备锻坯;通过六个道次制备锻坯;所述制备锻坯的具体过程如下:锻造:将加热好的铸锭转移到压缩机上并通过夹具固定铸锭;沿铸锭直径方向进行锻造;所述铸锭的变形量为25%~30%,压缩机压下速率为0.2mms~0.5mms;保温:锻造变形结束后,将铸锭转移回温度保持在1100℃~1170℃的电阻炉内,保温120min~180min,保温结束后,完成锻坯第一道次的制备过程;将铸锭再次转移到压缩机上,并以该铸锭的轴线为转轴,将该铸锭旋转90°;重复所述锻造和保温过程,进行第二道次锻造过程;第二道次结束后,再次将铸锭转移到压缩机上,并再次以该铸锭的轴线为转轴,将该铸锭旋转90°;继续重复所述锻造与保温过程,依次进行第三道次至六道次的锻造过程;当第六道次锻造过程结束后,锻坯随炉冷却至800℃后取出锻坯,用保温棉包裹该锻坯冷却至室温;待锻坯完全冷却后,去除包套,取出锻坯,得到组织均匀的TNM合金锻坯;在制备锻坯的锻造与保温过程中,各道次中电阻炉温度始终保持不变;所述制备锻坯中,铸锭从电阻炉转移到压缩机的时间不超过10s。

全文数据:一种组织均匀TNM合金锻坯的制备方法技术领域本发明涉及金属间化合物锻造及热处理领域,具体是一种组织均匀TNM合金锻坯的制备方法。背景技术TiAl合金是一种多相合金,组织常由体心立方BCC、面心立方FCC、密排六方HCP等晶体结构的相组成,相变过程较为复杂。并且,TiAl合金具有密度低、比强度高以及抗蠕变性好等特点,其使用温度在700-850℃,是应用于钛合金使用温度上限和高温合金使用温度下限的一种轻质高温结构金属材料。因此,TiAl不仅在理论方面有着重大的研究价值,还在工业应用方面有着较大的潜力。对于传统TiAl合金而言,其热加工能力较差,因此国内外学者做了大量的研究,以便提高TiAl合金的热加工能力。Clemens等人HelmutClemens,WilfriedWallgram,SaschaKremmer,VolkerGüther,AndreasOtto,ArnoBartels.DesignofNovelβ-SolidifyingTiAlAlloyswithAdjustableβB2-PhaseFractionandExcellentHot-Workability,ADVANCEDENGINEERINGMATERIALS,102008707-713于本世纪初设计了一种新的β凝固γTiAl合金,这种合金可以在高温下引入大量的BCC结构β相,以提高合金的热加工能力。这种合金的原子百分比成分为Ti-42-45Al-3-5Nb-0.1-2Mo-0.1-0.2B,一般称为TNM合金。对于铸态TNM合金,其原始组织一般比较粗大,在后续加工时,合金易出现“崩屑”、开裂等现象。且TNM合金铸锭中常存在一定的缺陷,如孔洞、组织不均匀等。缺陷的存在,限制了TNM合金铸锭的应用,因此,需要采用一种制备方法,来获得组织细小、均匀,且不含缺陷的TNM合金母材。一般来说,常采用锻造工艺来改善TNM合金组织,但是,在锻造过程中,合金一次变形量较大会导致锻坯开裂,且在锻造过程中,由于锻机压头与锻坯之间存在一定的摩擦,使得锻坯各部位变形不均匀,从而导致锻坯的组织不均匀。在专利号为201110263598.X的发明创造中,吕维洁等人提出了一种TiAl合金的等温锻造方法,该方法每道次变形量控制在5%以内,热处理温度为1150℃-1250℃,保温时间为0.5-1小时,能够得到预设厚度的板状TiAl合金。与该专利相比,本发明每道次的变形量更大,有效地缩短了锻造道次,从而节约成本,且本发明通过适当的中间保温,充分利用了TiAl合金的亚动态再结晶行为,显著提高了锻坯的组织均匀性。在专利号为201510465441.3的发明创造中,陈玉勇等人通过轧制的方法制备了组织细小、均匀的TiAl合金板,该方法主要分为三个阶段,每个阶段包含多次轧制过程,且三个阶段的轧制温度、应变速率、变形量以及保温时间都在变化。与该专利相比,本发明每道次的锻造变形量、应变速率、锻造温度、保温时间等工艺参数均不发生变化,工序简单,且锻造方法与轧制方法之间存在着本质差别。通过文献检索发现,Kong等人通过单道次锻造的方法获得了组织细小、均匀的锻坯FantaoKong,YuyongChen,DeliangZhang,ShuzhiZhang.HightemperaturedeformationbehaviorofTi-46Al-2Cr-4Nb-0.2Yalloy,MaterialsScienceandEngineeringA,5392012107-114,该方法的温度为1230℃,应变速率为0.01s-1-0.1s-1,变形量为75%。同时,Niu等人通过两道次锻造的方法获得了组织均匀的TiAl合金锻坯H.Z.Niu,Y.F.Chen,Y.S.Zhang,J.W.Lu,W.Zhang,P.X.Zhang.Phasetransformationanddynamicrecrystallizationbehaviorofaβ-solidifyingγ-TiAlalloyanditswroughtmicrostructurecontrol,MaterialsandDesign,902016196-203.,该方法的温度为1200℃,应变速率为0.01s-1,第一次变形前保温2h,第二次变形前回炉保温20min。从文献检索可知,虽然目前已经通过锻造的方法获得了组织均匀的TiAl合金锻坯,但其锻造温度均比较高,不仅会增加锻坯的制备成本,还会使得锻坯的组织发生粗化。且文献中,锻坯在道次间的中间保温时间较短甚至没有保温,锻坯难以发生亚动态再结晶行为,而本发明通过适当的中间保温,使锻坯充分发生亚动态再结晶行为,从而细化锻坯的微观组织,提高锻坯的组织均匀性。发明内容为了避免TNM合金锻造过程出现开裂现象,且充分利用亚动态再结晶现象,获得组织均匀性好的锻坯,本发明提出了一种组织均匀TNM合金锻坯的制备方法。本发明的具体过程如下:第一步,锻前准备。所述的锻前准备包括待压铸锭表面打磨、超声波探伤、待压铸锭表面均匀涂敷Y2O3浆料,以及对待压铸锭进行包套。第二步,加热铸锭。将经过包套的铸锭放入电阻炉中,使该铸锭以10℃min的速率随炉升温至1100℃~1170℃;保温2h,使该铸锭温度与电阻炉温度一致。第三步,制备锻坯。通过六个道次制备锻坯;在锻坯的锻造与保温过程中,各道次中电阻炉温度始终保持不变。所述制备锻坯的具体过程如下:锻造:将加热好的铸锭转移到压缩机上并通过夹具固定铸锭。沿铸锭直径方向进行锻造;所述铸锭的变形量为25%~30%,压缩机压下速率为0.2mms~0.5mms。保温:锻造变形结束后,将铸锭转移回温度保持在1100℃~1170℃的电阻炉内,保温120min~180min,保温结束后,完成锻坯第一道次的制备过程。将铸锭再次转移到压缩机上,并以该铸锭的轴线为转轴,将该铸锭旋转90°。重复所述锻造和保温过程,进行第二道次锻造过程。第二道次结束后,再此将铸锭转移到压缩机上,并再次以该铸锭的轴线为转轴,将该铸锭旋转90°。继续重复所述锻造与保温过程,依次进行第三道次至六道次的锻造过程。当第六道次锻造过程结束后,锻坯随炉冷却至800℃后取出锻坯,用保温棉包裹该锻坯冷却至室温。待锻坯完全冷却后,去除包套,取出锻坯,得到组织均匀的TNM合金锻坯所述铸锭从电阻炉转移到压缩机的时间不超过10s。所述包套由一个空心圆柱套筒和两个端盖组成,包套材料为不锈钢,厚度为5mm,包套内壁直径比铸锭直径大6mm,用耐火温度为1200℃的保温棉填充包套内壁与铸锭之间的间隙。本发明中,铸锭从电阻炉转移到压缩机的时间不超过10s。本发明采用“少量多次”的锻造方法来避免TNM合金锻造过程中的开裂现象,同时,充分利用锻后热处理过程中的亚动态再结晶现象,从而获得组织细小、均匀的TNM合金锻坯。本发明旨在采用锻造的方法获得组织细小、均匀的TNM合金锻坯,该方法工艺简单,容易控制,且可以预成型叶片等结构件。本发明采用多道次锻造变形的方法制备TNM合金,通过“少量多次”的锻造工艺能够避免合金发生开裂现象,同时,在道次间保温充足时间,组织可以充分发生亚动态再结晶,提高锻坯各部位组织均匀性,得到组织细小、均匀的TNM合金锻坯。与现有技术走过的轧制工艺相比,本发明所采用的道次较少;与传统采用的锻造工艺相比,本发明每道次锻造的变形量较小,有效地避免了合金因大变形而产生开裂现象的出现;同时,本发明充分利用了亚动态再结晶现象制备组织均匀的TNM合金锻坯;而且,本发明采用的是非等温锻造,且锻造温度较低,能够有效提高经济效益;并且本发明每个道次的变形参数以及热处理参数相同,操作简单。与现有技术相比较,本发明具有许多明显的优势:1锻造过程为非等温锻造过程,且锻造温度较低,可以提高经济效益;2充分利用了合金在锻造过程中所存储的能量,即合理控制道次间的保温时间,组织充分发生亚动态再结晶现象;3每道次锻造工艺参数相同,操作简洁。在申请号为201711081243.2的发明创造中,申请人提出了一种TiAl合金开坯锻造的方法,该方法不限制铸锭高径比,从而提高锻造效益。虽然该方法与本发明都是采用沿铸锭直径方向进行锻造变形,但是其主要用于TiAl合金的开坯锻造,并且由于其过程只包含三个道次,且保温时间较短,没有充分利于合金的亚动态再结晶现象,其均匀组织的效果明显不如本发明中的方法,即其不能达到本发明的效果。且本发明优化了锻造工艺参数,采用的压缩机压下速率较低,所以锻坯在锻造过程中能够发生明显的动态再结晶现象,形成大量的动态再结晶晶核。在随后的长时间保温过程中,本发明充分利用了锻坯在锻造过程中所储存的能量,动态再结晶晶核发生长大,即锻坯发生亚动态再结晶现象,从而均匀锻坯组织,获得了组织均匀性非常好的TNM合金锻坯。除此之外,本发明所采用的锻造温度更低,更能提高经济效益。图1为六道次锻造后锻坯不同部位的微观组织,可以观察到锻坯心部位置组织的再结晶程度非常高,片层团得到了显著的破碎,如图1f所示,同时,可以发现锻坯边部位置组织如图1b、c、d、e所示的片层团也得到了有效地破碎,组织的再结晶程度较高,心部位置与边部位置的组织非常类似,即锻坯的组织均匀性非常好。附图说明图1是锻坯不同部位的微观组织,其中图1a是在12锻坯的不同部位取样示意图;图1b是图1a中A部位的微观组织,图1c是图1a中B部位的微观组织,图1d是图1a中C部位的微观组织,图1e是图1a中D部位的微观组织,图1f是图1a中E部位的微观组织;图2是本发明的流程图。具体实施方式实施例一本实施例是一种组织均匀TNM合金锻坯的制备方法。本实施实例所述的TNM合金,其名义成分为Ti-43Al-4Nb-1Mo-0.2B,所述成分为原子百分比,所采用的铸锭尺寸为Φ73×99mm。本实施例的具体过程如下:第一步,锻前准备。待压铸锭为圆柱试样,对待压铸锭表面进行打磨,保证其表面质量良好、无缺陷。采用超声波探伤确定铸锭内部无裂纹,并在铸锭表面均匀涂敷Y2O3浆料,以避免铸锭表面氧化。待涂层风干后,对待压铸锭进行包套。包套由一个空心圆柱套筒和两个端盖组成,包套材料为不锈钢,厚度为5mm,包套内壁直径比铸锭直径大6mm,用耐火温度为1200℃的保温棉填充包套内壁与铸锭之间的间隙。采用氩弧焊连接包套的端盖与套筒。第二步,加热铸锭。将经过包套的铸锭放入电阻炉中,使该铸锭以10℃min的速率随炉升温至1150℃;保温2h,使铸锭温度与电阻炉温度一致。第三步,制备锻坯。通过六个道次制备锻坯;所述制备锻坯的具体过程如下:锻造:将加热好的铸锭转移到压缩机上并通过夹具固定铸锭,以防止铸锭在锻造过程中发生滚动。沿铸锭直径方向进行锻造,变形量为25%,压缩机压下速率为0.3mms。保温:锻造变形结束后,迅速将铸锭转移回温度保持在1150℃的电阻炉内,保温120min,保温结束后,完成锻坯第一道次的制备过程。在整个第一道次的锻造与保温过程中,电阻炉温度始终保持不变。所述锻造与保温过程为一个道次锻造过程。保温结束后,将铸锭再次转移到压缩机上,并以该铸锭的轴线为转轴,将该铸锭旋转90°。重复所述锻造和保温过程,进行第二道次锻造过程。第二道次结束后,再此将铸锭转移到压缩机上,并再次以该铸锭的轴线为转轴,将该铸锭旋转90°。继续重复所述锻造和保温过程,依次进行第三道次至六道次锻造过程。当第六道次锻造过程结束后,得到TNM合金锻坯,锻坯随炉冷却至800℃,然后取出锻坯,采用保温棉包裹锻坯冷却至室温。待锻坯完全冷却后,去除包套,取出锻坯。本发明中,铸锭从电阻炉转移到压缩机的时间不超过10s。对锻坯采用“五点取样法”观察其组织,发现锻坯的原始组织完全破碎,组织基本发生了完全再结晶,并且所取锻坯的五个部位的组织非常类似,均匀性非常好,如图1所示。这验证了本发明所采用的方法可以有效地制备组织均匀的TNM合金锻坯。实施例二本实施例是一种组织均匀TNM合金锻坯的制备方法。本实施实例所述的TNM合金,其名义成分为Ti-43Al-4Nb-1Mo-0.2B,所述成分为原子百分比,所采用的铸锭尺寸为Φ73×99mm。本实施例所述的具体过程如下:第一步,锻前准备。待压铸锭为圆柱试样,对待压铸锭表面进行打磨,保证其表面质量良好、无缺陷。采用超声波探伤确定铸锭内部无裂纹,并在铸锭表面均匀涂敷Y2O3浆料,以避免铸锭表面氧化。待涂层风干后,对待压铸锭进行包套。包套由一个空心圆柱套筒和两个端盖组成,包套材料为不锈钢,厚度为5mm,包套内壁直径比铸锭直径大6mm,用耐火温度为1200℃的保温棉填充包套内壁与铸锭之间的间隙。采用氩弧焊连接包套的端盖与套筒。第二步,加热铸锭。将经过包套的铸锭放入电阻炉中,使该铸锭以10℃min的速率随炉升温至1100℃;保温2h,使铸锭温度与电阻炉温度一致。第三步,制备锻坯。通过六个道次制备锻坯;所述制备锻坯的具体过程如下:锻造:将加热好的铸锭转移到压缩机上并通过夹具固定铸锭,以防止铸锭在锻造过程中发生滚动。沿铸锭直径方向进行锻造,变形量为30%,压缩机压下速率为0.5mms。保温:锻造变形结束后,迅速将铸锭转移回温度保持在1100℃的电阻炉内,保温180min,保温结束后,完成锻坯第一道次的制备过程。在整个第一道次的锻造与保温过程中,电阻炉温度始终保持不变。所述锻造与保温过程为一个道次锻造过程。保温结束后,将铸锭再次转移到压缩机上,并以该铸锭的轴线为转轴,将该铸锭旋转90°。重复所述锻造和保温过程,进行第二道次锻造过程。第二道次结束后,再此将铸锭转移到压缩机上,并再次以该铸锭的轴线为转轴,将该铸锭旋转90°。继续重复所述锻造和保温过程,依次进行第三道次至六道次锻造过程。当第六道次锻造过程结束后,得到TNM合金锻坯,锻坯随炉冷却至800℃,然后取出锻坯,采用保温棉包裹锻坯冷却至室温。待锻坯完全冷却后,去除包套,取出锻坯。本发明中,铸锭从电阻炉转移到压缩机的时间不超过10s。对锻坯采用“五点取样法”观察其组织均匀性,发现锻坯五个部位的组织非常类似,组织均匀性好,且组织中的原始片层均发生破碎,再结晶程度非常的高。实施例三本实施例是一种组织均匀TNM合金锻坯的制备方法。本实施实例所述的TNM合金,其名义成分为Ti-43Al-4Nb-1Mo-0.2B,所述成分为原子百分比,所采用的铸锭尺寸为Φ73×99mm。本实施例所述的具体过程如下:第一步,锻前准备。待压铸锭为圆柱试样,对待压铸锭表面进行打磨,保证其表面质量良好、无缺陷。采用超声波探伤确定铸锭内部无裂纹,并在铸锭表面均匀涂敷Y2O3浆料,以避免铸锭表面氧化。待涂层风干后,对待压铸锭进行包套。包套由一个空心圆柱套筒和两个端盖组成,包套材料为不锈钢,厚度为5mm,包套内壁直径比铸锭直径大6mm,用耐火温度为1200℃的保温棉填充包套内壁与铸锭之间的间隙。采用氩弧焊连接包套的端盖与套筒。第二步,加热铸锭。将经过包套的铸锭放入电阻炉中,使该铸锭以10℃min的速率随炉升温至1170℃;保温2h,使该铸锭温度与电阻炉温度一致。第三步,制备锻坯。通过六个道次制备锻坯;所述制备锻坯的具体过程如下:锻造:将加热好的铸锭转移到压缩机上并通过夹具固定铸锭,以防止铸锭在锻造过程中发生滚动。沿铸锭直径方向进行锻造,变形量为28%,压缩机压下速率为0.2mms。保温:锻造变形结束后,将铸锭转移回温度保持在1170℃的电阻炉内,保温150min,保温结束后,完成锻坯第一道次的制备过程。在整个锻造与保温过程中,电阻炉温度始终保持不变。所述锻造与保温过程为一个道次锻造过程。保温结束后,将铸锭再次转移到压缩机上,并以该铸锭的轴线为转轴,将该铸锭旋转90°。重复所述锻造和保温过程,进行第二道次锻造过程。第二道次结束后,再此将铸锭转移到压缩机上,并再次以该铸锭的轴线为转轴,将该铸锭旋转90°。继续重复所述锻造和保温过程,依次进行第三道次至六道次锻造过程。当第六道次锻造过程结束后,得到TNM合金锻坯,锻坯随炉冷却至800℃后,取出锻坯,用保温棉包裹锻坯冷却至室温。待锻坯完全冷却后,去除包套,取出锻坯。本发明中,铸锭从电阻炉转移到压缩机的时间不超过10s。对锻坯采用“五点取样法”观察其组织,结果表明,锻坯五个部位的组织再结晶程度较高,且组织非常类似,组织均匀性好。

权利要求:1.一种组织均匀TNM合金锻坯的制备方法,其特征在于,具体过程如下:第一步,锻前准备;所述的锻前准备包括待压铸锭表面打磨、超声波探伤、待压铸锭表面均匀涂敷Y2O3浆料,以及对待压铸锭进行包套;第二步,加热铸锭;将经过包套的铸锭放入电阻炉中,使该铸锭以10℃min的速率随炉升温至1100℃~1170℃;保温2h,使该铸锭温度与电阻炉温度一致;第三步,制备锻坯;通过六个道次制备锻坯;所述制备锻坯的具体过程如下:锻造:将加热好的铸锭转移到压缩机上并通过夹具固定铸锭;沿铸锭直径方向进行锻造;所述铸锭的变形量为25%~30%,压缩机压下速率为0.2mms~0.5mms;保温:锻造变形结束后,将铸锭转移回温度保持在1100℃~1170℃的电阻炉内,保温120min~180min,保温结束后,完成锻坯第一道次的制备过程;将铸锭再次转移到压缩机上,并以该铸锭的轴线为转轴,将该铸锭旋转90°;重复所述锻造和保温过程,进行第二道次锻造过程;第二道次结束后,再此将铸锭转移到压缩机上,并再次以该铸锭的轴线为转轴,将该铸锭旋转90°;继续重复所述锻造与保温过程,依次进行第三道次至六道次的锻造过程;当第六道次锻造过程结束后,锻坯随炉冷却至800℃后取出锻坯,用保温棉包裹该锻坯冷却至室温;待锻坯完全冷却后,去除包套,取出锻坯,得到组织均匀的TNM合金锻坯。2.如权利要求1所述组织均匀TNM合金锻坯的制备方法,其特征在于,所述包套由一个空心圆柱套筒和两个端盖组成,包套材料为不锈钢,厚度为5mm,包套内壁直径比铸锭直径大6mm,用耐火温度为1200℃的保温棉填充包套内壁与铸锭之间的间隙。3.如权利要求1所述组织均匀TNM合金锻坯的制备方法,其特征在于,在第三步制备锻坯的锻造与保温过程中,各道次中电阻炉温度始终保持不变。4.如权利要求1所述组织均匀TNM合金锻坯的制备方法,其特征在于,所述铸锭从电阻炉转移到压缩机的时间不超过10s。

百度查询: 西北工业大学 一种组织均匀TNM合金锻坯的制备方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。