买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明公布】GaNFET作为用于快速激光脉冲发生器的储能器_伟摩有限责任公司_201780063581.5 

申请/专利权人:伟摩有限责任公司

申请日:2017-10-13

公开(公告)日:2019-06-07

公开(公告)号:CN109863654A

主分类号:H01S3/11(2006.01)I

分类号:H01S3/11(2006.01)I

优先权:["2016.10.14 US 15/294,172"]

专利状态码:有效-授权

法律状态:2021.02.02#授权;2019.07.02#实质审查的生效;2019.06.07#公开

摘要:本公开涉及可以促进亚5纳秒激光二极管操作的系统和电路。示例系统包括触发源、激光二极管、第一场效应晶体管和第二场效应晶体管。激光二极管耦合到供电电压和第一场效应晶体管的漏极端子。第一场效应晶体管的源极端子耦合到地并且第一场效应晶体管的栅极端子耦合到触发源。第二场效应晶体管的漏极端子耦合到供电电压。第二场效应晶体管的源极端子和第二场效应晶体管的栅极端子耦合到地。在示例实施例中,第一场效应晶体管和第二场效应晶体管包括氮化镓GaN。

主权项:1.一种系统,包括:触发源;激光二极管;第一场效应晶体管,其中所述激光二极管耦合到供电电压和第一场效应晶体管的漏极端子,其中第一场效应晶体管的源极端子耦合到地,其中第一场效应晶体管的栅极端子耦合到所述触发源;和第二场效应晶体管,其中第二场效应晶体管的漏极端子耦合到所述供电电压,其中第二场效应晶体管的源极端子和第二场效应晶体管的栅极端子耦合到地。

全文数据:GaNFET作为用于快速激光脉冲发生器的储能器相关申请的交叉引用本申请要求对于2016年10月14日提交的美国专利申请No.15294,172的优先权,其内容通过引用结合于此。背景技术除非本文另有说明,否则本部分中描述的材料不是相对于本申请中的权利要求的现有技术,并且不通过在本部分中的包括而被认为是现有技术。传统的激光驱动器电路可以向激光光laserlight发射器件例如,激光二极管提供信号例如,特定电流和或电压。反过来,激光光发射器件可以发射恒定的或脉冲化的激光光。然而,操作具有短脉冲长度和或处于高频率或重复率的传统激光驱动器电路可能产生振铃ringing、不稳定、或其它不想要的影响。例如,在传统的激光脉冲发生器电路中,振铃可以是由寄生电感、固定电容器、和开关场效应晶体管的寄生电容形成的LC协整LCtank的结果。增加固定电容器的值可以减少振铃,但是脉冲恢复也可能更慢。发明内容本公开一般涉及配置为提供激光光的脉冲的激光系统和激光驱动器电路。在第一方面,提供了系统。该系统包括触发源、激光二极管、第一场效应晶体管、和第二场效应晶体管。激光二极管耦合到供电电压和第一场效应晶体管的漏极端子。第一场效应晶体管的源极端子耦合到地。第一场效应晶体管的栅极端子耦合到触发源。第二场效应晶体管的漏极端子耦合到供电电压。第二场效应晶体管的源极端子和第二场效应晶体管的栅极端子耦合到地。在第二方面,提供了电路。该电路包括激光二极管、第一场效应晶体管、和第二场效应晶体管。激光二极管耦合到供电电压和第一场效应晶体管的漏极端子。第一场效应晶体管的源极端子耦合到地。第二场效应晶体管的漏极端子耦合到供电电压。第二场效应晶体管的源极端子和第二场效应晶体管的栅极端子耦合到地。通过阅读以下详细描述,参考适当的附图,其它方面、实施例、和实施方式对于本领域普通技术人员将变得显而易见。附图说明图1示出了根据示例实施例的系统。图2A示出了根据示例实施例的电路。图2B示出了根据示例实施例的电路。图3示出了根据示例实施例的集总电路。图4示出了根据示例实施例的电压波形。具体实施方式本文描述了示例方法、器件、和系统。应当理解,词语“示例”和“示例性”在本文中用于意味着“用作示例、实例、或说明”。本文中描述为“示例”或“示例性”的任何实施例或特征不必要被解释为比其它实施例或特征更优选或更具优势。在不脱离本文提出的主题的范围的情况下,能够利用其它实施例,并且能够做出其它改变。因此,本文描述的示例实施例不意味着限制。如本文一般描述的和在附图中示出的本公开的方面能够以各种不同的配置来布置、替换、组合、分离、和设计,所有这些都在本文中考虑。此外,除非上下文另有所指,否则附图中的每一个中示出的特征可以彼此组合使用。因此,附图一般应被视为一个或多个整体实施例的组成方面,应理解并非所有示出的特征对于每个实施例都是必要的。I.概述激光脉冲发生器电路可以包括耦合到供电电压和第一场效应晶体管fieldeffecttransistor,FET的漏极端子的激光二极管。第一FET的源极端子耦合到地。第一FET的栅极端子可以耦合到波形生成器或另一类型的触发源。激光脉冲发生器电路也可以包括其漏极端子连接到供电电压并且其源极端子和栅极端子连接到地的第二FET。在示例实施例中,激光二极管可以配置为在非常短的脉冲长度例如,2纳秒之上提供激光光。在一些实施例中,第一和第二FET可以包括GaN例如,GaNFET或SiC例如,SiCFET。考虑其它类型的高压100+伏快速开关晶体管。例如,FET可以配置为用于微波应用。在一些实施例中,FET可以是倒装芯片或表面安装器件。第二FET可以减少由于激光脉冲发生器电路中的寄生电感和电容而可能在这种短脉冲长度处发生的振荡例如,振铃。此外,第二FET可以减少或消除在其它RLC电路设计中常见的供电电压与地之间的负电压的发展development。在示例实施例中,体二极管可以由连接第二FET的源极和漏极端子的p-n结形成。换句话说,体二极管可以充当非常快速的并联旁路二极管,并联旁路二极管可以在激光脉冲发生器电路的一些操作条件之下提供用于反向漏极电流例如,续流free-wheeling电流的路径。此外,在一些操作条件之下,第二FET可以充当具有与偏置bias成反比的电容的电容器。例如,利用GaNFET,相比于能量通过激光二极管放电的同时的电容,晶体管的电容可以在脉冲之后更高。II.示例系统图1示出了根据示例实施例的系统100的示意图。系统100包括触发源110、晶体管布置120、激光二极管130、和电源供应140。在一些实施例中,系统100可以包括可选的控制器150。触发源110可以包括波形生成器、脉冲信号生成器、或配置为提供触发脉冲或触发信号的另一类型的器件。激光二极管130耦合到供电电压,供电电压可以至少部分地由电源供应140提供。在示例实施例中,供电电压可以大于100伏。但是,用于供电电压的其它值也是可能的。晶体管布置120包括第一FET122和第二FET124。在示例实施例中,第一FET122和第二FET124能够是NMOSN-channelmetaloxidesemiconductor,n沟道金属氧化半导体、增强型、表面安装晶体管。在这种情景下,激光二极管130可以耦合到第一FET122的漏极端子。第一FET122的源极端子耦合到地端子。第一FET122的栅极端子耦合到触发源110。第二FET124的漏极端子耦合到供电电压例如,电源供应140。第二FET124的源极端子和第二FET124的栅极端子耦合到地。控制器150可以包括至少一个处理器和存储器。在这种情景下,至少一个处理器可以运行储存在存储器中的指令以便实行本文描述的各种操作。作为示例,控制器150可以引起系统100经由一个或多个激光脉冲产生激光光。在示例实施例中,控制器150可以引起触发源110提供触发脉冲信号以便引起激光二极管130发射激光脉冲。也就是说,控制器150可以配置为触发、调节、和或控制来自激光二极管130的激光光的发射。在一些实施例中,一个或多个激光脉冲可以包括少于2.5纳秒的脉冲宽度。然而,其它脉冲宽度是可能的并且在本文中考虑。在示例实施例中,第一FET122和第二FET124可以包括氮化镓GaN。也就是说,在这样的示例中,第一FET122和第二FET124可以是GaNFET器件。另外或替代地,第一FET122和第二FET124可以包括碳化硅SiC。也就是说,第一FET122和第二FET124能够是SiCFET器件。此外,第一FET122和或第二FET124可以包括高电子迁移率晶体管highelectronmobilitytransistor,HEMT。第一FET122和或第二FET124能够是以表面安装器件的形式。然而,考虑用于第一FET122和或第二FET124的其它形式因子。在一些实施例中,第二FET124可以配置为减少系统中的振荡。具体地,第二FET124可以配置为减少或消除第一FET122的漏极端子与源极端子之间的负电压。在示例实施例中,在系统100的一些操作条件之下,第二FET124可以包括体二极管,体二极管可以由连接第二FET的漏极与漏极端子的p-n结形成。这样,体二极管可以充当并联旁路二极管,并联旁路二极管可以提供用于反向漏极电流例如,续流电流的路径。如本文其它地方所述,第二FET可以充当具有与偏置成反比的电容的电容器。例如,GaNFET可以包括相比于能量通过激光二极管130放电的同时的电容在脉冲之后更高的电容。在一个实施例中,系统100可以包括连接在第一FET122的漏极端子与供电电压140之间的返回二极管。应该理解,系统100的元件的其它布置是可能的并且在本文中考虑。具体地,虽然本文的实施例可以涉及增强型NMOSFET,但是本领域普通技术人员将理解,电路200的许多其它变化可能提供快速开关能力和或提供亚2.5纳秒sub-2.5nanosecond激光光脉冲宽度。例如,能够修改系统100以将第一FET122和或第二FET124容纳为PMOSP-channelMetalOxideSemiconductor,P沟道金属氧化物半导体型和或耗尽型FET。所有这些变化都在本公开的范围内考虑。控制器150可以包括一个或多个处理器152和存储器154。一个或多个处理器152可以是通用处理器或专用处理器例如,数字信号处理器、专用集成电路等。一个或多个处理器152可以配置为运行储存在存储器154中的计算机可读程序指令。这样,一个或多个处理器152可以运行程序指令以提供本文所述的功能和操作中的至少一些。存储器154可以包括或采取可以由一个或多个处理器152读取或访问的一个或多个计算机可读储存介质的形式。一个或多个计算机可读储存介质能够包括可以整体地或部分地与一个或多个处理器152中的至少一个集成的易失性和或非易失性储存组件,诸如光学、磁性、有机或其它存储器或盘储存器。在一些实施例中,存储器154可以使用单个物理器件例如,一个光学、磁性、有机或其它存储器或盘储存单位来实施,而在其它实施例中,存储器154可以使用两个或更多个物理器件来实施。如所指出的,存储器154可以包括与系统100的操作有关的计算机可读程序指令。这样,存储器154可以包括用于执行或促进本文描述的功能的一些或全部的程序指令。III.示例电路图2A示出了根据示例实施例的电路200。电路200可以与关于图1所示和所述的系统100类似或相同。电路200的元件的一些或所有可以与系统100的对应元件类似或相同。电路200包括激光二极管230、第一FET230、和第二FET260。电路200也可以包括电压源240、触发源210、和控制器250。在示例实施例中,激光二极管230耦合到可以至少部分地由电压源240提供的供电电压242。激光二极管230也耦合到第一FET220的漏极端子224。第一FET220的源极端子226耦合到地端子280。在一些实施例中,供电电压可以大于100伏。此外,第二FET260的漏极端子264耦合到供电电压242。第二FET260的源极端子266和栅极端子262耦合到地端子280。结果,源极端子266、栅极端子262、和地端子280都处于基本相同的电压。没有第二FET260,在短脉冲宽度例如,少于5ns和或高重复率处,寄生电感270可能提供不期望的电路行为,诸如振铃或其它效应。然而,通过将源极端子266和栅极端子262耦合到地,第二FET260可以作为固定或可变电容器操作。第二FET260的电容值可以提供对寄生电感270的补偿。在一些实施例中,第一FET220的栅极端子222可以耦合到触发源210。在这种情景下,触发源210可以耦合到控制器250。触发源210可以是信号生成器,诸如泰克3390任意波形生成器。然而,触发源210可以附加地或替代地是配置为向栅极222提供连续的或脉冲化的电压信号的任何其它器件或定制电路例如,专用集成电路、ASIC或现场可编程门阵列、FPGA。作为示例,触发源210可以包括派更半导体PE29100高速FET驱动器。在示例实施例中,第一FET220可以是NMOS增强型FET。也就是说,当触发源210提供信号使得“高”栅极-源极电压例如,栅极222与漏极226之间的电压大于零时,第一FET220可以基本上操作为“导通”或者类似于关闭的开关。当触发源210提供“低”栅极-源极电压例如,栅极222与漏极226之间的零伏时,第一FET220可以操作为“截止”或类似于打开开关。在这样的场景中,触发源210可以可操作以向栅极222提供触发脉冲,使第一FET220“导通”并且引起激光二极管230发射激光光脉冲232。在示例性实施例中。激光光脉冲232可以具有少于2.5纳秒的脉冲宽度。此外,触发源210可以可操作以提供触发脉冲的脉冲序列以便引起激光二极管230发射激光光脉冲232的激光脉冲序列,脉冲序列的每个激光脉冲具有少于2.5纳秒的脉冲宽度。本领域普通技术人员将理解,电路200的许多其它变化可能提供快速开关能力和或提供亚2.5纳秒的激光光脉冲宽度。例如,能够修改电路200以使第一FET220和或第二FET260适应为PMOS型和或耗尽型FET。所有这些变化都在本公开的范围内考虑。应当理解,其它电路243可以包括在电路200中。在这种情景下,其它电路243能够包括例如可以在比第二FET260和或激光二极管230更慢的时间尺度之上操作的电路。可选地,第一FET220或第二FET260中的至少一个可以是高电子迁移率晶体管HEMT。即,HEMT能够包括半导体异质结构例如,GaAsAlGaAs、AlGaNAlNGaN等。附加地或替代地,第一FET220或第二FET260可以是高速高功率晶体管。此外,如本文其它地方所述,第一FET220和或第二FET260能够包括GaN,诸如高效功率转换公司EPC2010CNMOS表面安装GaN增强型功率晶体管。附加地或替代地,第一FET220和或第二FET260可以包括SiC。例如,第一FET220和或第二FET260可以是疾狼科锐WolfspeedCreeC3M0120090J-TRSiCN沟道表面安装FET。本文考虑了其它FET器件类型和材料。图2B示出了根据示例实施例的电路290。电路290的元件可以与电路200的对应元件类似或相同,如关于图2A所示和所述。电路290可以包括返回二极管292,返回二极管292能够是半导体二极管器件,诸如中央半导体CMPD914TR表面安装开关二极管。图3示出了根据示例实施例的集总电路300。集总电路300的元件可以是电路200和290的各种元件的集总电路模型表示,分别如关于图2A和图2B所示和所述。例如,集总电路300可以是第一FET220“导通”并且激光二极管230发射光232时的电路200的示意图。在这种情景下,集总电路300可以包括寄生电感270、特征电容310、和特征体二极管312。特征电容310可以基于第二FET260。在这种情景下,储存在特性电容320中的能量可以在脉冲宽度的纳秒时间尺度期间向激光二极管提供电流。电源供应可以在更慢得多的时间尺度之上对特征电容320再充电。特征电容310的值可以基于例如跨越激光二极管230的电压而变化。在一些实施例中,寄生电感270和特性电容310的组合可以提供配置为提供亚2.5纳秒激光脉冲宽度的RLC电路。这样,集总电路300内的电荷可以“续流”而不是在电路内振荡。此外,在初始脉冲之后并且一旦通过激光二极管的电流开始减小,第二FET260可以包括可以防止漏极到源极电压反转的特性体二极管312。通过防止这种电压反转,可以减少或消除振铃。换句话说,当以高速开关第一FET时,第二FET260可以减少或消除供电电压242与地之间的负电压的发展。这样,第二FET260及其相关联的特性电容310和特性体二极管312可以减少或消除与以短脉冲宽度和或以高重复率驱动第一FET220和激光二极管230相关联的振铃。虽然第二场效应晶体管124和第二FET260特性化为场效应晶体管,但应理解,具有与第二场效应晶体管124和第二FET260相同特性的另一电气器件能够在本公开的范围内被替换。也就是说,可以使用另一类型的电路元件,诸如p-n二极管、肖特基二极管、反激二极管flybackdiode、或续流二极管等来代替第二场效应晶体管124或第二FET260,以减少或消除激光脉冲发生器电路中的振铃。图4示出了根据示例实施例的电压波形400和410。即,电压波形400和410可以分别表示没有和有第二FET260的单个激光脉冲操作期间跨越激光二极管230的电压。例如,电压波形400可以涉及其中电路200不包括第二FET260的示例。在这种情景下,波形400包括期望脉冲402但也可以包括振铃振荡404。这种振荡404可以减少激光二极管230的操作寿命,引起不想要的激光光发射,和或限制最大可能的激光重复率。将第二FET260包括到电路200中可以提供更好的器件操作特性。例如,激光脉冲412可以具有少于2.5纳秒的全宽半最大值full-widthhalfmaximum,FWHM414。应当理解,可以以其它方式测量激光脉冲宽度例如,10%=上升沿,90%=下降沿等。此外,电压波形410可以表现出减少或消除的振铃振荡。这样,激光二极管230可以具有更长的操作寿命,可以减少不想要的激光光发射,并且与没有第二FET260的情景相比,可以增加最大可能的激光重复率。附图中所示的具体布置不应视为限制。应该理解的是,其它实施例可以包括给定附图中所示的每个元件的更多或更少。此外,可以组合或省略所示元件的一些。此外,说明性实施例可以包括未在图中示出的元件。表示信息处理的步骤或块能够对应于能够配置为执行本文描述的方法或技术的特定逻辑功能的电路。替代地或另外地,表示信息处理的步骤或块能够对应于模块、段、或程序代码的部分包括相关数据。程序代码能够包括由处理器可运行的一个或多个指令,用于实施方法或技术中的特定逻辑功能或动作。程序代码和或相关数据能够储存在任何类型的计算机可读介质上,诸如包括磁盘的储存器件、硬盘驱动器、或其它储存介质。计算机可读介质也能够包括非暂时性计算机可读介质,诸如储存数据达短时间段的计算机可读介质,像寄存器存储器、处理器高速缓存、和随机存取存储器randomaccessmemory,RAM。计算机可读介质也能够包括储存程序代码和或数据达更长时间段的非暂时性计算机可读介质。因此,计算机可读介质可以包括二级或持久长期储存器,例如像只读存储器readonlymemory,ROM、光盘或磁盘、光盘只读存储器compact-discreadonlymemory,CD-ROM。计算机可读介质也能够是任何其它易失性或非易失性储存系统。计算机可读介质能够被认为是计算机可读储存介质,例如有形储存器件。虽然已经公开了各种示例和实施例,但是其它示例和实施例对于本领域技术人员而言将是显而易见的。各种公开的示例和实施例是出于说明的目的而不意图限制,真实范围由所附权利要求指示。

权利要求:1.一种系统,包括:触发源;激光二极管;第一场效应晶体管,其中所述激光二极管耦合到供电电压和第一场效应晶体管的漏极端子,其中第一场效应晶体管的源极端子耦合到地,其中第一场效应晶体管的栅极端子耦合到所述触发源;和第二场效应晶体管,其中第二场效应晶体管的漏极端子耦合到所述供电电压,其中第二场效应晶体管的源极端子和第二场效应晶体管的栅极端子耦合到地。2.根据权利要求1所述的系统,进一步包括控制器,其中所述控制器包括至少一个处理器和存储器,其中所述至少一个处理器运行储存在所述存储器中的指令以便实行操作。3.根据权利要求2所述的系统,其中所述操作包括引起所述触发源提供触发脉冲信号以便引起所述激光二极管发射激光脉冲。4.根据权利要求3所述的系统,其中所述激光脉冲包括少于2.5纳秒的脉冲宽度。5.根据权利要求1所述的系统,其中第一场效应晶体管和第二场效应晶体管包括氮化镓GaN。6.根据权利要求1所述的系统,其中第一场效应晶体管和第二场效应晶体管包括碳化硅SiC。7.根据权利要求1所述的系统,其中第一场效应晶体管或第二场效应晶体管中的至少一个包括表面安装器件。8.根据权利要求1所述的系统,其中所述供电电压大于100伏。9.根据权利要求1所述的系统,其中第一场效应晶体管或第二场效应晶体管中的至少一个包括高电子迁移率晶体管HEMT。10.根据权利要求1所述的系统,其中第二场效应晶体管配置为减少所述系统中的振荡。11.根据权利要求1所述的系统,其中第二场效应晶体管配置为减少或消除第一场效应晶体管的漏极端子与源极端子之间的负电压。12.根据权利要求1所述的系统,进一步包括连接在第一场效应晶体管的漏极端子与所述供电电压之间的返回二极管。13.一种电路,包括:激光二极管;第一场效应晶体管,其中所述激光二极管耦合到供电电压和第一场效应晶体管的漏极端子,其中第一场效应晶体管的源极端子耦合到地;和第二场效应晶体管,其中第二场效应晶体管的漏极端子耦合到所述供电电压,其中第二场效应晶体管的源极端子和第二场效应晶体管的栅极端子耦合到地。14.如权利要求13所述的电路,其中第一场效应晶体管或第二场效应晶体管中的至少一个包括高电子迁移率晶体管HEMT。15.如权利要求13所述的电路,其中第一场效应晶体管或第二场效应晶体管中的至少一个包括高速高功率晶体管。16.如权利要求13所述的电路,其中所述供电电压大于100伏。17.如权利要求13所述的电路,进一步包括耦合到第一场效应晶体管的栅极端子的触发源。18.如权利要求17所述的电路,其中所述触发源可操作以提供触发脉冲以便引起所述激光二极管发射激光光脉冲。19.如权利要求18所述的电路,其中所述激光光脉冲具有少于2.5纳秒的脉冲宽度。20.如权利要求17所述的电路,其中所述触发源可操作以提供触发脉冲的脉冲序列以便引起所述激光二极管发射激光光脉冲的激光脉冲序列,其中每个激光脉冲具有少于2.5纳秒的脉冲宽度。

百度查询: 伟摩有限责任公司 GaNFET作为用于快速激光脉冲发生器的储能器

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。