买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】城市地下管廊监测方法_吉林建筑大学_201910137540.7 

申请/专利权人:吉林建筑大学

申请日:2019-02-25

公开(公告)日:2021-02-23

公开(公告)号:CN109655114B

主分类号:G01D21/02(20060101)

分类号:G01D21/02(20060101);G06N3/08(20060101);G06Q10/06(20120101)

优先权:

专利状态码:有效-授权

法律状态:2021.02.23#授权;2019.05.14#实质审查的生效;2019.04.19#公开

摘要:本发明公开了城市地下管廊监测系统,包括:位移沉降传感器,其用于监测城市地下管廊的位移沉降;加速度传感器,其用于监测城市地下管廊的振动加速度;倾角传感器,其用于监测城市地下管廊的倾斜角度;土体压力传感器,其用于监测城市地下管廊受到的土体压力;外部环境监测模块,其用于监测城市地下管廊所处位置的外部环境。本发明还公开了城市地下管廊监测方法。

主权项:1.城市地下管廊监测方法,其特征在于,包括如下步骤:步骤一、采集城市地下管廊的外部环境信息,根据所述城市地下管廊的外部环境信息得到外部环境影响指数ψ;步骤二、采集所述城市地下管廊的位移沉降、所述城市地下管廊的振动加速度、所述城市地下管廊的倾斜角度,根据所述城市地下管廊的位移沉降、所述城市地下管廊的振动加速度及所述城市地下管廊的倾斜角度得到城市地下管廊的结构稳定性指数γ;步骤三、获取城市地下管廊受到的土体压力P及城市地下管廊的建筑年龄Y,根据所述城市地下管廊受到的土体压力P及所述城市地下管廊的建筑年龄Y、所述外部环境影响指数ψ和所述结构稳定性指数γ对所述城市地下管廊的结构健康状态进行判断。

全文数据:城市地下管廊监测系统及其监测方法技术领域本发明属于城市地下管廊监测技术领域,特别涉及城市地下管廊监测系统及其监测方法。背景技术城市地下管廊就是地下城市管廊综合走廊,即在城市地下建造一个隧道空间,将电力、通信,燃气、供热、给排水等各种工程管线集于一体,设有专门的检修口、吊装口和监测系统,实施统一规划、统一设计、统一建设和管理,是保障城市运行的重要基础设施和“生命线”。自然环境和人类活动都会对地城市地下管廊造成不同程度的影响,日积月累,会导致城市地下管廊的结构安全造成影响。而城市地下管廊的结构安全对城市地下管廊内部的管廊安全起着至关重要的作用。因此,城市地下管廊系统的结构健康状态进行监测是十分必要的。发明内容本发明设计开发了城市地下管廊监测系统,其目的是通过数据采集对城市地下管廊的进行结构健康状态判断进而确保城市地下管廊的安全使用。本发明设计开发了城市地下管廊监测方法,其目的之一是通过计算外部环境影响指数和城市地下管廊的结构稳定性指数对城市地下管廊的健康状态进行判断。本发明设计开发了城市地下管廊监测方法,其目的之二是通过BP神经网络确定城市地下管廊的健康等级,进而能够及时发现城市地下管廊的存在的安全隐患。本发明提供的技术方案为:位移沉降传感器,其用于监测城市地下管廊的位移沉降;加速度传感器,其用于监测城市地下管廊的振动加速度;倾角传感器,其用于监测城市地下管廊的倾斜角度;土体压力传感器,其用于监测城市地下管廊受到的土体压力;外部环境监测模块,其用于监测城市地下管廊所处位置的外部环境。优选的是,所述城市地下管廊监测系统还包括:数据采集模块,其与所述位移沉降传感器、所述加速度传感器、所述倾角传感器、所述土体压力传感器和所述外部环境监测模块同时相连;数据输入模块,其用于输入所述城市地下管廊的信息数据;数据接收与存储模块,其接收所述数据采集模块和所述数据输入模块发送的信息;信息运算与处理模块,其接收所述数据接收与存储模块发送的信息,并将所述信息进行计算并输出城市地下管廊的结构健康状态等级;显示模块,其与所述信息运算与处理模块连接,用于显示所述结构健康状态等级。优选的是,所述外部环境监测模块包括:温度传感器,其用于监测城市地下管廊所在位置的地面以上的环境温度;湿度传感器,其用于监测城市地下管廊所在位置的地面以上的环境湿度;土壤紧实度检测仪,其用于监测城市地下管廊所在位置的上方土壤紧实度。城市地下管廊监测方法,使用所述的城市地下管廊监测系统,包括如下步骤:步骤一、采集城市地下管廊的外部环境信息,根据所述城市地下管廊的外部环境信息得到外部环境影响指数ψ;步骤二、采集所述城市地下管廊的位移沉降、所述城市地下管廊的振动加速度、所述城市地下管廊的倾斜角度,根据所述城市地下管廊的位移沉降、所述城市地下管廊的振动加速度及所述城市地下管廊的倾斜角度得到城市地下管廊的结构稳定性指数γ;步骤三、获取城市地下管廊受到的土体压力P及城市地下管廊的建筑年龄Y,根据所述城市地下管廊受到的土体压力P及所述城市地下管廊的建筑年龄Y、所述外部环境影响指数ψ和所述结构稳定性指数γ对所述城市地下管廊的结构健康状态进行判断。优选的是,所述外部环境影响指数为:其中,T为环境温度,RH为环境湿度,Ps为土壤紧实度,T0为设定的标准环境温度,RH0为设定的标准环境湿度,Ps-0为设定的标准土壤紧实度,ω1、ω1和ω3为常数,ω1=0.3~0.5,ω2=0.2~0.3,ω3=0.6~0.8。优选的是,所述结构稳定性指数为:其中,dh为监测的一年内的位移沉降,dh0为一年内的标准位移沉降;a为监测的地下管廊振动加速度,a0为地下管廊标准振动加速度,dθ为监测的一年内的倾斜角度变化量,dθ0为一年内的标准倾斜角度变化量;e为自然对数的底数。优选的是,在所述步骤三中,通过BP神经网络模型对所述城市地下管廊的结构健康状态进行判断,包括如下步骤:步骤1、按照采样周期,获取所述城市地下管廊受到的土体压力P、所述城市地下管廊的建筑年龄Y、所述外部环境影响指数ψ和所述结构稳定性指数γ;步骤2、依次将获取的参数进行规格化,确定三层BP神经网络的输入层神经元向量x={x1,x2,x3,x4},其中,x1为土体压力系数、x2为城市地下管廊的建筑年龄系数、x3为外部环境影响指数系数、x4为结构稳定性指数系数;步骤3、所述输入层向量映射到隐层,所述隐层向量y={y1,y2,…,ym},m为隐层节点个数;步骤4、得到输出层神经元向量o={o1,o2,o3,o4};其中,o1为设定的第1健康等级,o2为设定的第2健康等级,o3为设定的第3健康等级,o4为设定的第4健康等级,所述输出层神经元值为k为输出层神经元序列号,k={1,2,3,4},i为设定的第i个健康等级,i={1,2,3,4},当ok为1时,此时,待监城市地下管廊处于ok对应的健康等级;步骤5、所述信息运算与处理模块根据输出的健康等级判断健康状态,所述显示模块显示健康状态;其中,所述第1健康等级为健康状态优,城市地下管廊结构处于最佳状态;第2健康等级为健康状态良,城市地下管廊结构处于较安全状态,能够正常使用;所述第3健康等级为健康状态较差,需要对城市地下管廊结构加强监管;所述第4健康等级为健康状态差,城市地下管廊结构存在安全隐患,需要进行检修。优选的是,在所述步骤3中,所述隐层节点个数m满足:其中n为输入层节点个数,p为输出层节点个数。优选的是,在所述步骤2中,将所述城市地下管廊受到的土体压力P、所述城市地下管廊的建筑年龄Y、所述外部环境影响指数ψ和所述结构稳定性指数γ进行规格化的公式为:其中,xj为输入层向量中的参数,Xj分别为测量参数P、Y、ψ、γ,j=1,2,3,4;Xjmax和Xjmin分别为相应参数的最大值和最小值。优选的是,所述隐层及所述输出层的激励函数均采用S型函数fjx=11+e-x。本发明的有益效果是:本发明提供的城市地下管廊监测系统,能够通过数据采集对城市地下管廊的进行结构健康状态判断进而确保城市地下管廊的安全使用。本发明提供的城市地下管廊监测方法,通过计算外部环境影响指数和城市地下管廊的结构稳定性指数对城市地下管廊的健康状态进行判断;并且通过BP神经网络确定城市地下管廊的健康等级,进而能够及时发现城市地下管廊的存在的安全隐患。具体实施方式下面对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。本发明提供了城市地下管廊监测系统,包括:位移沉降传感器,其设置于地下管廊的下部管壁内侧面,用于监测城市地下管廊的位移沉降;加速度传感器,其设于地下管廊的上部管壁内侧面,用于监测城市地下管廊的振动加速度;倾角传感器,其设置于地下管廊的中部或下部管壁内侧面,用于监测城市地下管廊的倾斜角度;土体压力传感器,其设置于地下管廊的上部管壁外侧面,用于监测城市地下管廊受到的土体压力;外部环境监测模块,其用于监测城市地下管廊所处位置的外部环境。其中,在城市地下管廊的沿线上设置多组监测系统,分别用于监测其所在的每段地下管廊的结构健康状态。每组监测系统中的位移沉降传感器、加速度传感器、倾角传感器和土体压力传感器分别位设置于地下管廊的同一管壁横截面上。其中,采用的位移沉降传感器、加速度传感器、倾斜角度传感器及土体压力传感器的规格如表1所示:表1传感器规格参数表所述城市地下管廊监测系统还包括:数据采集模块,其与所述位移沉降传感器、所述加速度传感器、所述倾角传感器、所述土体压力传感器和所述外部环境监测模块同时相连;数据输入模块,其用于输入所述城市地下管廊的信息数据,主要包括城市地下管廊的建筑年龄和地理位置;数据接收与存储模块,其接收所述数据采集模块和所述数据输入模块发送的信息;信息运算与处理模块,其接收所述数据接收与存储模块发送的信息,并将所述指标信息数据进行计算并输出城市地下管廊的结构健康状态等级;显示模块,其与所述信息运算与处理模块连接,用于显示所述结构健康状态等级。在本实施例中,所述外部环境监测模块包括:温度传感器,其用于监测城市地下管廊所在位置的地面以上的环境温度;湿度传感器,其用于监测城市地下管廊所在位置的地面以上的环境湿度;土壤紧实度检测仪,其用于监测城市地下管廊所在位置的上方土壤紧实度。所述温度传感器、湿度传感器和土壤紧实度检测仪与所述位移沉降传感器、所述加速度传感器、所述倾角传感器和所述土体压力传感器所在的位置相对应。本发明还提供了城市地下管廊监测方法,包括如下步骤:步骤一、采集城市地下管廊的外部环境信息,根据所述城市地下管廊的外部环境信息得到外部环境影响指数ψ;其中,所述外部环境信息包括:城市地下管廊所在位置的地面以上的环境温度、环境湿度和地下管廊上方的土壤紧实度;步骤二、采集所述城市地下管廊的位移沉降、所述城市地下管廊的振动加速度、所述城市地下管廊的倾斜角度,根据所述城市地下管廊的位移沉降、所述城市地下管廊的振动加速度及所述城市地下管廊的倾斜角度得到城市地下管廊的结构稳定性指数γ;步骤三、获取城市地下管廊受到的土体压力P及城市地下管廊的建筑年龄Y,根据所述城市地下管廊受到的土体压力P及所述城市地下管廊的建筑年龄Y、所述外部环境影响指数ψ和所述结构稳定性指数γ对所述城市地下管廊的结构健康状态进行判断。在另一实施例中,所述外部环境影响指数为:其中,T为环境温度,RH为环境湿度,Ps为土壤紧实度,T0为设定的标准环境温度,RH0为设定的标准环境湿度,Ps-0为设定的标准土壤紧实度,ω1、ω1和ω3为常数,ω1=0.3~0.5,ω2=0.2~0.3,ω3=0.6~0.8。在另一实施例中,所述结构稳定性指数为:其中,dh为监测的一年内的位移沉降,dh0为一年内的标准位移沉降;a为监测的地下管廊振动加速度,a0为地下管廊标准振动加速度,dθ为监测的一年内的倾斜角度变化量,dθ0为一年内的标准倾斜角度变化量;e为自然对数的底数。在另一实施例中,在步骤三中,通过BP神经网络模型对所述城市地下管廊的结构健康状态进行判断,包括如下步骤:步骤1、建立BP神经网络模型。BP模型上各层次的神经元之间形成全互连连接,各层次内的神经元之间没有连接,输入层神经元的输出与输入相同,即oi=xi。中间隐含层和输出层的神经元的操作特性为opj=fjnetpj其中,p表示当前的输入样本,ωji为从神经元i到神经元j的连接权值,opi为神经元j的当前输入,opj为其输出;fj为非线性可微非递减函数,取为S型函数,即fjx=11+e-x。本发明采用的BP网络体系结构由三层组成,第一层为输入层,共n个节点,对应了表示设备工作状态的n个检测信号,这些信号参数由数据预处理模块给出;第二层为隐层,共m个节点,由网络的训练过程以自适应的方式确定;第三层为输出层,共p个节点,由系统实际需要输出的响应确定。该网络的数学模型为:输入向量:x=x1,x2,...,xnT中间层向量:y=y1,y2,...,ymT输出向量:o=o1,o2,...,opT本发明中,输入层节点数为n=4,输出层节点数为p=4,隐藏层节点数m由下式估算得出:输入层4个参数分别表示为:x1为土体压力系数、x2为城市地下管廊的建筑年龄系数、x3为外部环境影响指数系数、x4为结构稳定性指数系数;由于传感器获取的数据属于不同的物理量,其量纲各不相同。因此,在数据输入人工神经网络之前,需要将数据规格化为0-1之间的数。归一化的公式为其中,xj为输入层向量中的参数,Xj分别为测量参数P、Y、ψ、γ,j=1,2,3,4;Xjmax和Xjmin分别为相应测量参数中的最大值和最小值,采用S型函数。具体而言,对于城市地下管廊受到的土体压力P,进行规格化后,得到土体压力系数x1:其中,Pmin和Pmax分别为土体压力传感器测量的最小土体压力和最大土体压力。同样的,对于城市地下管廊的建筑年龄Y通过下式进行规格化,得城市地下管廊的建筑年龄系数x2:其中,Ymin和Ymax分别为设定的最小建筑年龄和最大建筑年龄。对于计算得到的外部环境影响指数ψ,进行规格化后,得到外部环境影响指数系数x3:其中,ψmin和ψmax分别为计算得到的最小外部环境影响指数和最大外部环境影响指数。对于计算得到的结构稳定性指数γ,进行规格化后,得到结构稳定性指数系数x4:其中,γmin和γmax分别为计算得到的的最小结构稳定性指数和最大结构稳定性指数。输出层4个参数分别表示为:o1为设定的第1健康等级,o2为设定的第2健康等级,o3为设定的第3健康等级,o4为设定的第4健康等级,所述输出层神经元值为k为输出层神经元序列号,k={1,2,3,4},i为设定的第i个健康等级,i={1,2,3,4},当ok为1时,此时,监测的城市地下管廊处于ok对应的健康等级。步骤2、进行BP神经网络的训练。建立好BP神经网络节点模型后,即可进行BP神经网络的训练。根据产品的历史经验数据获取训练的样本,并给定输入节点i和隐含层节点j之间的连接权值,隐层节点j和输出层节点k之间的连接权值。1训练方法各子网采用单独训练的方法;训练时,首先要提供一组训练样本,其中的每一个样本由输入样本和理想输出对组成,当网络的所有实际输出与其理想输出一致时,表明训练结束;否则,通过修正权值,使网络的理想输出与实际输出一致;各子网训练时的输出样本如表2所示。表2网络训练用的输出样本2训练算法BP网络采用误差反向传播BackwardPropagation算法进行训练,其步骤可归纳如下:第一步:选定一结构合理的网络,设置所有节点阈值和连接权值的初值。第二步:对每个输入样本作如下计算:a前向计算:对l层的j单元式中,为第n次计算时l层的j单元信息加权和,为l层的j单元与前一层即l-1层的单元i之间的连接权值,为前一层即l-1层,节点数为nl-1的单元i送来的工作信号;i=0时,令为l层的j单元的阈值。若单元j的激活函数为sigmoid函数,则且若神经元j属于第一隐层l=1,则有若神经元j属于输出层l=L,则有且ejn=xjn-ojn;b反向计算误差:对于输出单元对隐单元c修正权值:η为学习速率。第三步:输入新的样本或新一周期样本,直到网络收敛,在训练时各周期中样本的输入顺序要重新随机排序。BP算法采用梯度下降法求非线性函数极值,存在陷入局部极小以及收敛速度慢等问题。更为有效的一种算法是Levenberg-Marquardt优化算法,它使得网络学习时间更短,能有效地抑制网络陷于局部极小。其权值调整率选为Δω=JTJ+μI-1JTe其中J为误差对权值微分的雅可比Jacobian矩阵,I为输入向量,e为误差向量,变量μ是一个自适应调整的标量,用来确定学习是根据牛顿法还是梯度法来完成。在系统设计时,系统模型是一个仅经过初始化了的网络,权值需要根据在使用过程中获得的数据样本进行学习调整,为此设计了系统的自学习功能。在指定了学习样本及数量的情况下,系统可以进行自学习,以不断完善网络性能。步骤3、信息运算与处理模块根据输出的健康等级判断健康状态,所述显示模块显示健康状态;其中,所述第1健康等级为健康状态优,城市地下管廊结构处于最佳状态;第2健康等级为健康状态良,城市地下管廊结构处于较安全状态,能够正常使用;所述第3健康等级为健康状态较差,需要对城市地下管廊结构加强监管,例如缩短监测周期等,以防城市地下管廊出现安全问题;所述第4健康等级为健康状态差,城市地下管廊结构存在安全隐患,需要进行检修。尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。

权利要求:1.城市地下管廊监测系统,其特征在于,包括:位移沉降传感器,其用于监测城市地下管廊的位移沉降;加速度传感器,其用于监测城市地下管廊的振动加速度;倾角传感器,其用于监测城市地下管廊的倾斜角度;土体压力传感器,其用于监测城市地下管廊受到的土体压力;外部环境监测模块,其用于监测城市地下管廊所处位置的外部环境。2.根据权利要求1所述的城市地下管廊监测系统,其特征在于,还包括:数据采集模块,其与所述位移沉降传感器、所述加速度传感器、所述倾角传感器、所述土体压力传感器和所述外部环境监测模块同时相连;数据输入模块,其用于输入所述城市地下管廊的信息数据;数据接收与存储模块,其接收所述数据采集模块和所述数据输入模块发送的信息;信息运算与处理模块,其接收所述数据接收与存储模块发送的信息,并将所述信息进行计算后输出城市地下管廊的结构健康状态等级;显示模块,其与所述信息运算与处理模块连接,用于显示所述结构健康状态等级。3.根据权利要求2所述的城市地下管廊监测系统,其特征在于,所述外部环境监测模块包括:温度传感器,其用于监测城市地下管廊所在位置的地面以上的环境温度;湿度传感器,其用于监测城市地下管廊所在位置的地面以上的环境湿度;土壤紧实度检测仪,其用于监测城市地下管廊所在位置的上方土壤紧实度。4.城市地下管廊监测方法,其特征在于,使用如权利要求3所述的城市地下管廊监测系统,包括如下步骤:步骤一、采集城市地下管廊的外部环境信息,根据所述城市地下管廊的外部环境信息得到外部环境影响指数ψ;步骤二、采集所述城市地下管廊的位移沉降、所述城市地下管廊的振动加速度、所述城市地下管廊的倾斜角度,根据所述城市地下管廊的位移沉降、所述城市地下管廊的振动加速度及所述城市地下管廊的倾斜角度得到城市地下管廊的结构稳定性指数γ;步骤三、获取城市地下管廊受到的土体压力P及城市地下管廊的建筑年龄Y,根据所述城市地下管廊受到的土体压力P及所述城市地下管廊的建筑年龄Y、所述外部环境影响指数ψ和所述结构稳定性指数γ对所述城市地下管廊的结构健康状态进行判断。5.根据权利要求4所述的城市地下管廊监测方法,其特征在于,所述外部环境影响指数为:其中,T为环境温度,RH为环境湿度,Ps为土壤紧实度,T0为设定的标准环境温度,RH0为设定的标准环境湿度,Ps-0为设定的标准土壤紧实度,ω1、ω1和ω3为常数,ω1=0.3~0.5,ω2=0.2~0.3,ω3=0.6~0.8。6.根据权利要求5所述的城市地下管廊监测方法,其特征在于,所述结构稳定性指数为:其中,dh为监测的一年内的位移沉降,dh0为一年内的标准位移沉降;a为监测的地下管廊振动加速度,a0为地下管廊标准振动加速度,dθ为监测的一年内的倾斜角度变化量,dθ0为一年内的标准倾斜角度变化量;e为自然对数的底数。7.根据权利要求5或6所述的城市地下管廊监测方法,其特征在于,在所述步骤三中,通过BP神经网络模型对所述城市地下管廊的结构健康状态进行判断,包括如下步骤:步骤1、按照采样周期,获取所述城市地下管廊受到的土体压力P、所述城市地下管廊的建筑年龄Y、所述外部环境影响指数ψ和所述结构稳定性指数γ;步骤2、依次将获取的参数进行规格化,确定三层BP神经网络的输入层神经元向量x={x1,x2,x3,x4},其中,x1为土体压力系数、x2为城市地下管廊的建筑年龄系数、x3为外部环境影响指数系数、x4为结构稳定性指数系数;步骤3、所述输入层向量映射到隐层,所述隐层向量y={y1,y2,…,ym},m为隐层节点个数;步骤4、得到输出层神经元向量o={o1,o2,o3,o4};其中,o1为设定的第1健康等级,o2为设定的第2健康等级,o3为设定的第3健康等级,o4为设定的第4健康等级,所述输出层神经元值为k为输出层神经元序列号,k={1,2,3,4},i为设定的第i个健康等级,i={1,2,3,4},当ok为1时,此时,待监城市地下管廊处于ok对应的健康等级;步骤5、所述信息运算与处理模块根据输出的健康等级判断健康状态,所述显示模块显示健康状态;其中,所述第1健康等级为健康状态优,城市地下管廊结构处于最佳状态;第2健康等级为健康状态良,城市地下管廊结构处于较安全状态,能够正常使用;所述第3健康等级为健康状态较差,需要对城市地下管廊结构加强监管;所述第4健康等级为健康状态差,城市地下管廊结构存在安全隐患,需要进行检修。8.根据权利要求7所述的城市地下管廊监测方法,其特征在于,在所述步骤3中,所述隐层节点个数m满足:其中n为输入层节点个数,p为输出层节点个数。9.根据权利要求8所述的城市地下管廊监测方法,其特征在于,在所述步骤2中,将所述城市地下管廊受到的土体压力P、所述城市地下管廊的建筑年龄Y、所述外部环境影响指数ψ和所述结构稳定性指数γ进行规格化的公式为:其中,xj为输入层向量中的参数,Xj分别为测量参数P、Y、ψ、γ,j=1,2,3,4;Xjmax和Xjmin分别为相应参数的最大值和最小值。10.如权利要求9所述的城市地下管廊监测方法,其特征在于,所述隐层及所述输出层的激励函数均采用S型函数fjx=11+e-x。

百度查询: 吉林建筑大学 城市地下管廊监测方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。