买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】电力转换系统及电力转换系统的控制方法_丰田自动车株式会社_201910193353.0 

申请/专利权人:丰田自动车株式会社

申请日:2019-03-14

公开(公告)日:2021-04-09

公开(公告)号:CN110336482B

主分类号:H02M7/5387(20070101)

分类号:H02M7/5387(20070101);H02M3/158(20060101);H02M1/14(20060101);H02M1/32(20070101);H02M7/00(20060101);H01L23/46(20060101);B60L50/51(20190101)

优先权:["20180328 JP 2018-062251"]

专利状态码:有效-授权

法律状态:2021.04.09#授权;2019.11.08#实质审查的生效;2019.10.15#公开

摘要:本申请涉及电力转换系统及电力转换系统的控制方法。一种电力转换系统,包括:逆变器;电压转换器,包括连接到直流电源的高电压端和连接到逆变器的低电压端;和控制器。控制器被配置为控制开关元件,使得在第一状态下低电压端的电压变成比高电压端的电压低。控制器被配置为控制开关元件,使得在第二状态下低电压端的电压变成与高电压端的电压相等。

主权项:1.一种电力转换系统,所述电力转换系统将直流电源的电力转换为行驶电动机的驱动电力,所述电力转换系统的特征在于包括:逆变器,所述逆变器被配置为向所述行驶电动机提供交流电力;电压转换器,所述电压转换器包括连接到所述直流电源的高电压端和连接到所述逆变器的低电压端,所述电压转换器包括开关元件和电抗器,并且被配置为对所述直流电源的电压进行降压,并且向所述逆变器提供所述直流电源的所述电压;和控制器,所述控制器被配置为控制所述电压转换器,所述控制器被配置为控制所述开关元件,使得在第一状态下所述低电压端的电压变成比所述高电压端的电压低,所述第一状态是流到所述逆变器的电流少于规定的电流阈值的状态和所述行驶电动机中消耗的电力少于规定的电力阈值的状态之中的至少一个状态,所述控制器被配置为控制所述开关元件,使得在第二状态下所述低电压端的所述电压变成与所述高电压端的所述电压相等,所述第二状态是流到所述逆变器的所述电流多于所述规定的电流阈值的状态和所述行驶电动机中消耗的所述电力多于所述规定的电力阈值的状态之中的至少一个状态,并且所述控制器被配置为控制所述开关元件,使得在第五状态下所述低电压端的所述电压变成与所述高电压端的所述电压相等,而与流到所述逆变器的所述电流或在所述行驶电动机中消耗的所述电力的大小无关,所述第五状态是所述开关元件的温度超过第一规定的温度阈值的状态和所述电抗器的温度超过第二规定的温度阈值的状态之中的至少一个状态。

全文数据:电力转换系统及电力转换系统的控制方法技术领域本说明书公开了一种涉及将直流电源的电力转换为行驶电动机的驱动电力的电力转换系统和电力转换系统的控制方法的技术。背景技术在WO2003015254和日本专利申请公开No.2017-093055JP2017-093055A中公开了将直流电源的电力转换为行驶电动机的驱动电力的电力转换系统。WO2003015254的电力转换系统包括:升压转换器,其提升直流电源的电力;以及逆变器,其将提升的直流电力转换为交流电力。JP2017-093055A的电力转换系统包括:第一电压转换器,其对第一直流电源的电压进行升压;第二电压转换器,其对第二直流电源的电压进行降压;以及逆变器,其将从第一和第二电压转换器输出的电力转换为交流电力。WO2003015254的升压转换器和JP2017-093055A的第一和第二电压转换器都是斩波转换器,其包括用于电力转换的开关元件和电抗器。发明内容由于大电流在用于电动车辆的电力转换系统中流动,因此电力转换系统中的发热量很大。当提供给行驶电动机的电流或电力特别大时,流入电力转换系统的电流也变大。因此,发热量增加。斩波电压转换器通过开关元件的开关产生脉动电流,并且开关元件本身和电抗器产生热。本发明涉及一种电力转换系统,其将直流电源的电力转换为行驶电动机的驱动电力,该电力转换系统抑制当提供给行驶电动机的电流或电力很大时的发热量。本发明的第一方面是一种电力转换系统,其将直流电源的电力转换为行驶电动机的驱动电力。电力转换系统包括:逆变器;电压转换器;和控制器。逆变器被配置为向行驶电动机提供交流电力。电压转换器包括连接到直流电源的高电压端和连接到逆变器的低电压端。电压转换器包括开关元件和电抗器,并且被配置为对直流电源的电压进行降压并将直流电源的电压提供给逆变器。控制器被配置为控制电压转换器。控制器被配置为控制开关元件,使得在第一状态下低电压端的电压变成比高电压端的电压低。第一状态是其中流到逆变器的电流少于规定的电流阈值的状态和在行驶电动机中消耗的电力少于规定的电力阈值的状态中的至少一个状态。控制器被配置为控制开关元件,使得在第二状态下低电压端的电压变成与高电压端的电压相等。第二状态是其中流到逆变器的电流多于规定的电流阈值的状态和在行驶电动机中消耗的电力多于规定的电力阈值的状态之中的至少一个状态。短语“少于阈值”可以是“等于或少于阈值”。短语“多于阈值”可以是“等于或多于阈值”。利用该配置,电力转换系统的控制器控制电压转换器,使得当流到逆变器的电流或在行驶电动机中消耗的电力大于阈值时,低电压端的电压变成与高电压端的电压相等。在斩波电压转换器的情况下,通过将涉及降压的开关元件保持在ON状态,可以将高电压端的电压调节为等于低电压端的电压在双向DC-DC转换器的情况下,将涉及降压的开关元件保持在ON状态,同时将涉及升压的开关元件保持在OFF状态。这使得可以防止产生脉动电流并抑制开关元件和电抗器中的热的产生。在电力转换系统中,可以基于行驶电动机的转速和输出转矩来确定规定的电流阈值和规定的电力阈值。通常,电动机的特性由称为TN图的曲线图表示。TN图是横轴指示电动机转速、纵轴指示电动机的输出转矩的曲线图。在TN图上,可以绘制电动机恒定输出电力的曲线。当以电力单位表示上述阈值时,阈值可以表示为TN图上的曲线。利用该配置,基于行驶电动机的转速和输出转矩确定阈值,可以从目标转速和目标转矩计算电力阈值。在电力转换系统中,电压转换器可以是双向DC-DC转换器,其包括用于对高电压端的电压进行降压并从低电压端输出高电压端的电压的降压功能和用于对低电压端的电压进行升压并从高电压端输出低电压端的电压的升压功能。电压转换器的低电压端可以连接到充电端口。利用该配置,当直流电源是可再充电的二次电池时,外部电源的电压利用包括在电力转换系统中的电压转换器来升压,并且用于对二次电池充电。这消除了用于外部电源的电压调节器的必要性。在电力转换系统中,控制器可以被配置为控制开关元件,使得在第五状态下低电压端的电压变成与高电压端的电压相等,而与流到逆变器的电流或在行驶电动机中消耗的电力的大小无关。第五状态可以是其中开关元件的温度超过第一规定温度阈值的状态以及电抗器的温度超过第二规定温度阈值的状态之中的至少一个状态。术语“第一规定温度阈值和第二规定温度阈值”是指保护温度,以防止开关元件和电抗器的故障。利用该配置,可以防止开关元件或电抗器过热,而与流到逆变器的电流或在行驶电动机中消耗的电力的大小无关。在电力转换系统中,电压转换器可以包括连接在正电极线和负电极线之间的半导体元件,以及与半导体元件串联连接的过电流保护器件。利用该配置,即使当半导体元件短路时,过电流保护器件也分离半导体元件,从而可以消除短路。当过电流保护器件操作时,电压转换器的降压操作变成不可操作。但是,仍然可以输出与输入电压相同的电压。即,即使在过电流保护器件操作之后,也可以继续驱动行驶电动机。在电力转换系统中,电抗器的磁饱和电流可以小于逆变器的最大输入电流。也就是说,由于在电流较大时不使用电抗器,因此不需要在逆变器的输入电流最大时起作用的大型电抗器。在电力转换系统中,电压转换器可以包括容纳开关元件的第一半导体模块。逆变器可以包括容纳电力转换开关元件的第二半导体模块。电抗器可以设置在第一半导体模块和第二半导体模块之间。利用该配置,将第一半导体模块和第二半导体模块连接到电抗器的汇流条容易电缆连接。本发明的第二方面是一种电力转换系统的控制方法。电力转换系统包括:逆变器;电压转换器;和控制器。逆变器被配置为向行驶电动机提供交流电力。电压转换器具有连接到直流电源的高电压端和连接到逆变器的低电压端。电压转换器包括开关元件和电抗器,并且被配置为对直流电源的电压进行降压并将直流电源的电压提供给逆变器。控制器被配置为控制电压转换器。该控制方法包括:由控制器控制开关元件,使得在第一状态下低电压端的电压变成比高电压端的电压低,第一状态是其中流到逆变器的电流少于规定的电流阈值的状态和在行驶电动机中消耗的电力少于规定的电力阈值的状态之中的至少一个状态;以及由控制器控制开关元件使得在第二状态下低电压端的电压变成与高电压端的电压相等,第二状态是其中流到逆变器的电流多于规定的电流阈值的状态和在行驶电动机中消耗的电力多于规定的电力阈值状态之中的至少一个状态。附图说明下面将参考附图描述本发明的示例性实施例的特征、优点以及技术和工业重要性,附图中相同的数字表示相同的元件,并且其中:图1是示出包括第一实施例的电力转换系统的电动车辆的电力系统的框图;图2是确定电压转换器的输出电压的过程的流程图;图3是电动机的TN图的一个示例;图4是电压转换器的输出电压映射的一个示例;图5是示出电抗器的特性的一个示例的曲线图;图6是示出包括第二实施例的电力转换系统的电动车辆的电力系统的框图;图7是包括开关元件和电抗器的集成的堆叠单元的透视图;和图8是堆叠单元的平面图。具体实施方式参考图1至图5,将描述第一实施例的电力转换系统2。图1示出了示出包括电力转换系统2的电动车辆90的电力系统的框图。该实施例的电动车辆90包括电池11、电力转换系统2、高阶控制器15和行驶电动机13。电动车辆90通过利用电池11的电力驱动电动机13而行驶。电力转换系统2连接在电池11和电动机13之间。电力转换系统2将从电池11输出的直流电力转换成为适合于驱动电动机13的交流电力。电力转换系统2包括电压转换器电路10、逆变器电路20和电力控制器8。首先,将描述电压转换器电路10。电压转换器电路10具有连接到电池11的高电压端高电压端正电极10a1、高电压端负电极10a2。电压转换器电路10具有连接到逆变器电路20的低电压端低电压端正电极10b1、低电压端负电极10b2。为了便于描述,将一组高电压端正电极10a1和高电压端负电极10a2称为高电压端10a,将一组低电压端正电极10b1和低电压端负电极10b2称为低电压端10b。电压转换器电路10具有用于对施加到高电压端10a的电压进行降压并将降压后的电压输出到低电压端10b的降压功能以及用于对施加到低电压端10b的电压进行升压并将升压后的电压输出到高电压端10a的升压功能。也就是说,电压转换器电路10是双向DC-DC转换器。施加到低电压端10b的电压是当利用车辆的减速能量反向驱动电动机13时获得的电力再生电力的电压。尽管电动机13的驱动电压根据驾驶员的加速器工作加速器操作量等而改变,但是最大驱动电压等于电池11的输出电压。即,电动机13以等于或少于电池11的输出电压的电压操作。电动机13的驱动电压由加速器操作量等确定。例如,当加速器操作量大时,电动机13的驱动电压增加,而当加速器操作量小时,驱动电压也减小。当电动机13的适当驱动电压低于电池11的输出电压时,电力控制器8操作电压转换器电路10以对电池11的输出电压进行降压并将降压电压提供给逆变器电路20。将描述电压转换器电路10的电路配置。两个开关元件3a、3b串联连接在高电压端正电极10a1和高电压端负电极10a2之间。开关元件3a、3b分别与二极管9反向并联连接。电抗器5连接在两个开关元件3a、3b的串联连接的中点和低电压端正电极10b1之间。低电压端负电极10b2和高电压端负电极10a2直接连接。如图1所示,电压转换器电路10是斩波型的,包括开关元件3a、3b和电抗器5。开关元件3a、3b互补地操作使得当一个元件关闭时另一元件被导通。开关元件3a参与降压操作,而开关元件3b参与升压操作。电压转换器电路10操作使得高电压端10a和低电压端10b之间的电压比变成目标电压比。根据高电压端10a侧的电压和低电压端10b侧的电压之间的平衡来确定电流的方向。电力控制器8控制开关元件3a、3b。在图1中,虚线箭头表示信号线。电压转换器电路10包括测量开关元件3a的温度的温度传感器6、测量电抗器5的温度的温度传感器7、以及测量流过电抗器5的电流的电流传感器16。通过温度传感器6、7和电流传感器16的测量数据被发送到电力控制器8。电力控制器8调节流过电压转换器电路10的电流,以防止开关元件3a和电抗器5过热。将描述逆变器电路20。逆变器电路20包括六个开关元件4a-4f和六个二极管9。二极管9分别与开关元件4a-4f反向并联连接。六个开关元件4a-4f配对以形成串联连接。三个串联连接并联连接。当开关元件4a-4f适当地重复开关操作时,从各个串联连接的中点输出交流电。电力控制器8还控制六个开关元件4a-4f。在图1中,省略了从电力控制器8到开关元件4a-4f的信号线的图示。在电压转换器电路10和逆变器电路20之间,并联连接平滑电容器12。换句话说,平滑电容器12连接在电压转换器电路10的低电压端正电极10b1和低电压端负电极10b2之间。平滑电容器12抑制电流在电压转换器电路10和逆变器电路20之间流动的脉动。电动机13配备有转速传感器14,其测量电动机13的转速。转速传感器14的测量数据也被发送到电力控制器8。电力控制器8还考虑到利用转速传感器14测量的电动机13的转速,控制电压转换器电路10和逆变器电路20的开关元件。电力控制器8连接到高阶控制器15。高阶控制器15基于诸如加速器操作量的信息确定电动机13的目标输出转矩。目标输出转矩被发送到电力控制器8。如前所述,电动机13的驱动电压等于或少于电池11的输出电压。在接收到目标输出转矩时,电力控制器8确定电压转换器电路10的目标电压以及逆变器电路20的输出交流电的目标频率。电力控制器8控制电压转换器电路10的开关元件3a、3b和逆变器电路20的开关元件4a-4f,使得实现确定的目标电压达和目标频率。开关元件3a、3b和电抗器5产生大量的热。电力控制器8控制开关元件3a、3b,以防止开关元件3a、3b特别是涉及降压的开关元件3a和电抗器5过热。当电动机13中消耗的电力超过规定阈值电力阈值Pth时,电力控制器8控制电压转换器电路10,使得低电压端10b的电压变成与高电压端10a的电压相等。具体地,电力控制器8将开关元件3a保持在ON状态,同时将开关元件3b保持在OFF状态。结果,高电压端正电极10a1和低电压端正电极10b1始终处于连接状态,从而两端的电压变成相等。电动机13的优选驱动电压随加速器操作量等而变化。在该实施例的电力转换系统2中,优先防止开关元件3a或电抗器5过热。当预期大电流流入开关元件3a或电抗器5时,开关元件3a保持在ON状态,而开关元件3b保持在OFF状态。因此,消除了与开关元件3a、3b的开关相关的电流的脉动,并且抑制了开关元件3a和电抗器5中的发热。电力控制器8利用温度传感器6、7持续监视开关元件3a的温度和电抗器5的温度。当开关元件3a或电抗器5的温度超过温度阈值时,电力控制器8将开关元件3a保持在ON状态,同时将开关元件3b保持在OFF状态,而与电动机13中消耗的电力的大小无关。即,电力控制器8控制开关元件3a、3b,使得高电压端10a的电压和低电压端10b的电压变成相等。这使得可以防止开关元件3a和电抗器5的温度进一步增加。图2示出了由电力控制器8执行的输出电压确定过程的流程图。将参考图2描述电力控制器8的过程。定期执行图2的过程。电力控制器8从温度传感器6、7获取数据,并将数据与温度阈值进行比较。具体地,电力控制器8将由温度传感器7测量的温度即,电抗器5的温度与第一温度阈值Tth1进行比较步骤S2。当电抗器5的温度超过第一温度阈值Tth1时步骤S2:否,电力控制器8转移到步骤S8的过程。在步骤S8中,电力控制器8将与输入电压相同的值设定为输出电压。然后,电力控制器8控制开关元件3a、3b步骤S7。如前所述,当执行步骤S8时,电力控制器8将开关元件3a保持在ON状态,并在步骤S7中将开关元件3b保持在OFF状态。当电抗器的温度等于或少于第一温度阈值Tth1时步骤S2:是,电力控制器8将由温度传感器6测量的温度即,开关元件3a的温度与第二温度阈值Tth2步骤S3进行比较。当开关元件3a的温度超过第二温度阈值Tth2时,电力控制器8将与在步骤S2的情况下的输入电压相同的值设定为输出电压步骤S3:否,S8。当开关元件3a的温度等于或少于第二温度阈值Tth2时步骤S3:是,电力控制器8基于TN图识别电动机13中消耗的电力步骤S4。当电动机13中消耗的电力超过规定电力阈值Pth时步骤S5:否,S8,电力控制器8将与输入电力相同的值设定为输出电力。将描述步骤S4、S5的过程。图3是TN图,其具有表示电动机13的转速的横轴和表示电动机13的输出转矩的纵轴。当确定电动机13的当前转速和电动机13的目标输出转矩时,识别出图3的曲线图中的位置。在TN图中,可以描绘相等的电力线。在图3的TN图中,描绘了电力Pw=电力阈值Pth的曲线。图3中的范围A灰度范围表示电动机13相对于目标输出转矩的输出电力Pw小于电力阈值Pth的范围。范围B表示电动机13相对于目标输出转矩的输出电力Pw大于电力阈值Pth的范围。电动机13的输出电力Pw相当于电动机13中消耗的电力。电力控制器8涉及TN图以基于电动机13的目标输出和当前转速检查电动机13的输出电力Pw是否超过电力阈值Pth。当电动机13的输出电力Pw即,电动机13中消耗的电力超过电力阈值Pth时,电力控制器8将与输入电压相同的值设定为电压转换器电路10的输出电压步骤S5:否,S8。在这种情况下,如前所述,在步骤S7的过程中,电力控制器8将开关元件3a保持在ON状态,同时将开关元件3b保持在OFF状态。当电动机13中消耗的电力Pw未超过电力阈值Pth时步骤S5:是,电力控制器8基于电动机13的转速确定电压转换器电路10的输出电压步骤S6。将参考图3和图4描述确定输出电压的过程。电力控制器8存储定义具有输出转矩恒定的电动机13的转速与电压转换器电路10的输出电压之间的关系的映射输出电压映射。图4示出了输出电压映射的一个示例。图4的横轴表示电动机13的转速,纵轴表示电压转换电路10的输出电压。例如,当当前时间的转速为Wa,并且电动机13的目标输出转矩为Ta时,可以在图3的TN图上识别点Q。图3中的虚线DL是延伸通过点Q的线,其中输出转矩恒定为Ta。定义该线上的转速和输出电压之间的关系的映射是图4的映射。对于电力控制器8的每个输出转矩准备与图4相同的映射。给出图4的映射的描述。粗线的曲线图G1确定电压转换器电路10相对于电动机13的转速的输出电压。虚线的曲线图Ga表示电动机13的最大效率相位控制所需的电压。最大效率相位控制所需的电压与电动机13的转速成比例,如曲线图Ga所示。在这个示例中,在电动机13的转速从W1到W2时,电压转换器电路10的输出电压根据曲线图Ga上的电动机13的转速最大效率相位控制所需的电压确定。例如,当电动机13的转速是Wa时,电压转换器电路10的输出电压被确定为来自曲线G1的电压Va。电压Vmin是可以由电压转换器电路10稳定地输出的最小电压。因此,当转速低于W1时,电压转换器电路10的输出电压被设定为电压Vmin。在电动机13中消耗的电力小于电力阈值Pth的范围内,电压转换器电路10的输出电压变成比输入电压低的值。转速大于W2的范围属于图3的范围B。在范围B中,如前所述,电压转换器电路10的输出电压被确定为输入电压Vin,而与电动机13中消耗的电力无关。输入电压Vin等于电池11的输出电压Vin。在以上示例中,基于电动机13的最大效率相位控制所需的电压来确定电压转换器电路10的输出电压。可以基于场削弱控制而不是最大效率相位控制所需的电压确定电压转换器电路10的输出电压。场削弱控制所需的电压也与电动机13的转速成比例。图4的曲线图Gb表示场削弱控制所需的电动机13的电压。可以确定输出电压与电动机13的转速以及曲线图Gb成比例。然而,输出电压的最小值仍然是电压Vmin,最大值是电压Vin。再次参考图2的流程图。一旦在步骤S6中确定输出电压,电力控制器8就控制电压转换器电路10的开关元件3a、3b,使得实现所确定的输出电压。当提供给电动机13的电力即,电动机13中消耗的电力Pa超过电力阈值Pth时,电压转换器电路10将开关元件3a保持在ON状态,同时将开关元件3b保持在OFF状态,使得输出电力可以变成与输入电力相等。结果,防止脉动电流流到开关元件3a和电抗器5,从而抑制了热的产生。当电动机13中消耗的电力少于电力阈值Pth时,电力控制器8控制开关元件3a、3b,使得电压转换器电路10的输出电压变成比输入电压低。当向电动机13提供大电力时,本实施例的电力转换系统2可以通过将开关元件3a保持在ON状态来抑制热的产生。现在,将描述电抗器5的特征。图5示出了当横轴表示流到电抗器5的电流而纵轴表示电抗器5的电抗时的曲线图。电抗器的电抗在规定的电流值下迅速降低。电抗迅速降低的电流值是磁饱和电流Ith。图5的电流Imax是流到电动机13的最大电流。用于本实施例的电力转换系统2的电抗器5的磁饱和电流Ith可以小于流到电动机13的电流Imax。这是因为当大电力流入电动机13时,电抗器5不需要工作。当电动机13中消耗的电力超过电力阈值Pth时,电压转换器电路10将开关元件3a保持在ON状态。当电动机13中消耗的电力是电力阈值Pth时,流入电压转换器电路10的电流是PthVin。这里,电压Vin是电压转换器电路10的输入电压,其等于电池11的输出电压VB。当需要降压操作时流入电抗器5的电流的上限是PthVB。因此,磁饱和电流Ith可以等于电流值PthVB。换句话说,电抗器5的磁饱和电流可以小于流入逆变器电路20的电流的最大值。图6示出了包括第二实施例的电力转换系统2a的电动车辆91的框图。电力转换系统2a包括电压转换器电路110、逆变器电路20和电力控制器8。电压转换器电路110具有连接到电池11的高电压端110a和连接到逆变器电路20的低电压端110b。电力转换系统2a与第一实施例的电力转换系统2的不同之处在于,电力转换系统2a包括过电流保护器件106和充电端口107。其他配置方面与第一实施例的电力转换系统2相同。因此,省略除过电流保护器件106和充电端口107之外的配置的描述。在电压转换器电路110的正电极线19a和负电极线19b之间,开关元件3b和过电流保护器件106串联连接。过电流保护器件106是在规定大小或更大的电流流动时熔断的熔断器。电压转换器电路110是类似于第一实施例的电压转换器电路10的双向DC-DC转换器。开关元件3b参与升压操作。开关元件3b连接在正电极线19a和负电极线19b之间。因此,当开关元件3b具有短路故障时,正电极线19a和负电极线19b短路,并且大电流流动。然而,当大电流流动时,过电流保护器件106立即熔断,其在正电极线19a和负电极线19b之间断开。当正电极线19a和负电极线19b断开时,电压转换器电路110不能执行降压操作。在这种情况下,电力控制器8将开关元件3a保持在ON状态。当开关元件3a保持在ON状态时,高电压端正电极110a1和低电压端正电极110b1直接耦合,并且电池11的电力直接流入逆变器电路20。因此,电动车辆91可以继续行驶。充电端口107连接在电压转换器电路110的低电压端正电极110b1和低电压端负电极110b2之间。充电端口107可以连接到外部电源。如前所述,由于电压转换器电路110是双向DC-DC转换器,所以电压转换器电路110可以对输入到低电压端110b的电压进行升压,并从高电压端110a输出升压后的电压。因此,可以将电压低于电池11的外部电源连接到充电端口107并对电池11充电。将描述第二实施例的修改。变形例的电力转换系统不包括开关元件3b。这种电压转换器电路110可以执行降压操作,尽管它不支持升压操作。在这种情况下,二极管9a和过电流保护器件106串联连接在正电极线19a和负电极线19b之间。即使当二极管9a具有短路故障,并且大电流在正电极线19a和负电极线19b之间流动时,过电流保护器件106也熔断,其在正电极线19a和负电极线19b之间断开。同样在这种情况下,电力控制器8可以将开关元件3a保持在ON状态,并且电动车辆91可以继续行驶。参考图7和图8,将描述电力转换系统22a的硬件的一部分。图7是堆叠单元40的透视图,并且图8是连接到汇流条的堆叠单元40的平面图。在图8中,除了堆叠单元40之外还描绘了电容器元件50。电容器元件50相当于图1的平滑电容器12。堆叠单元40是包括电压转换器电路10中包括的开关元件3a、3b,包括在逆变器电路20中的开关元件4a-4f和电抗器35的集成的设备。电抗器35相当于图1的电抗器5。堆叠单元40由第一半导体模块30a、第二半导体模块30b、30c、30d、多个冷却器41和电抗器35构成。第一半导体模块30a容纳电压转换器电路10的开关元件3a、3b和分别与开关元件反向并联连接的二极管9。开关元件3a、3b在第一半导体模块30a中串联连接。第二半导体模块30b容纳逆变器电路20的开关元件4a、4b以及分别与开关元件反向并联连接的二极管9。开关元件4a、4b在第二半导体模块30b内串联连接。第二半导体模块30c、30d具有与第二半导体模块30b相同的结构。第二半导体模块30c、30d均容纳两个开关元件和两个二极管。第二半导体模块30b-30d具有与第一半导体模块30a相同的结构。在下文中,第一半导体模块30a和第二半导体模块30b-30d统称为半导体模块30。正电极端子31、负电极端子32和中点端子33从半导体模块30的每一个的一个窄宽度表面延伸。在半导体模块30内,正电极端子31中的每一个与两个开关元件的每个串联连接的正电极侧连接,而负电极端子32中的每一个连接到串联连接中的每一个的负电极侧。在半导体模块30内,中点端子33中的每一个与两个开关元件的每个串联连接的中点连接。冷却器41是承载冷却剂的线性管。冷却器41平行布置,其中半导体模块30或电抗器35介于相邻的冷却器41之间。相邻的冷却器41通过两个连接小管42a、42b连接。线性冷却器41中的每一个具有连接到连接小管42a的一个纵向端,以及连接到连接小管42b的另一个纵向端。冷却器41的衬里端部处的冷却器41a连接到供应管43和排放管44。从冷却器41的衬里方向图中的X方向观察,供应管43布置成与连接小管42a重叠,排放管44布置成与连接小管42b重叠。供应管43和排放管44连接到未示出的冷却剂循环设备。冷却剂通过供应管43从冷却剂循环设备提供。冷却剂通过连接小管42a分配到所有冷却器41。冷却剂吸收相邻半导体模块30或电抗器35的热,同时流过冷却器41的内部。吸收热的冷却剂通过连接小管42b和排放管44返回到冷却剂循环设备。半导体模块30和电抗器35的侧面都与冷却器41接触,使得半导体模块30和电抗器35从其两侧冷却。堆叠单元40共同冷却开关元件和电抗器35。图8示出了堆叠单元40的平面图。图8还描绘了与半导体模块30的每个端子和电容器元件50连接的汇流条51-56。汇流条是由具有小内阻的金属形成的导电构件。将描述汇流条51-56的电缆连接。第一汇流条51具有连接到第一半导体模块30a的正电极端子31的一端。第一汇流条51具有用作连接端子51a的另一端,连接端子51a连接到从电池11延伸的电力电缆的正电极线。第一汇流条51的另一端连接端子51a对应于电压转换器电路10的高电压端正电极10a1。第二汇流条52具有连接到第一半导体模块30a的负电极端子32的一端以及连接到电容器元件50的电极50b另一端。在某个中点中第二汇流条52还连接到第二半导体模块30b-30的负电极端子32。在电极50b的一部分处第二汇流条52还连接到第三汇流条53的一端。第三汇流条53具有用作连接端子53a的另一端,连接端子53a连接到从电池11延伸的电力电缆的负电极线。第三汇流条53的另一端连接端子53a对应于电压转换器电路10的高电压端负电极10a2。第二汇流条52和第三汇流条53相当于电压转换器电路10和逆变器电路20的负电极线。第四汇流条54连接在第一半导体模块30a的中点端子33和电抗器35的第一端子36之间。第五汇流条55连接电抗器35的第二端子37、电容器元件50的电极50a和第二半导体模块30b-30d的正电极端子31。三个第六汇流条56分别与第二半导体模块30b-30d的中点端子33连接。三个第六汇流条56具有用作连接端子56a的另一端。三个第六汇流条56的另一端连接端子56a相当于逆变器电路20的三相交流输出端。如图8中清楚地所示,半导体模块30和电抗器35以及电容器元件50通过汇流条51-56以紧凑和有组织的方式连接。电抗器35布置在第一半导体模块30a和第二半导体模块30b-30d之间。这种布置实现了连接半导体模块30和电抗器35的汇流条51-56的紧凑电缆连接。将描述关于实施例中描述的技术的关注点。在实施例中,当电动机13中消耗的电力大于电力阈值Pth时,电力控制器8将输出电压调节为等于输入电压。电力控制器8可以通过监视流入逆变器电路20的电流而不是电动机13中消耗的电力来改变输出电压。流过电压转换器电路10的电抗器的电流即,由电流传感器16测量的电流被提供给逆变器电路20。因此,流入逆变器电路20的电流可由电压转换器电路10的电流传感器16测量。当流入逆变器电路20的电流大于规定的电流阈值时,电力控制器8可以被配置为将输出电压调节为等于输入电压。电池11相当于直流电源的一个示例。直流电源可以是燃料电池。当直流电源是燃料电池时,电压转换器电路可以是仅可以支持降压操作的电压降压转换器。尽管已经在前面详细描述了本发明的具体实施例,但它们仅仅是说明性的,并不意图限制本发明的权利要求。权利要求中描述的技术包括前述特定示例的各种修改和变形。本说明书或附图中描述的技术组件独立地或以各种组合示出了技术有用性,并且不限于在提交申请时在权利要求中公开的组合。本说明书或附图中示出的技术可以同时实现多个目标。完成一个目标本身提供了其技术实用性。

权利要求:1.一种电力转换系统,所述电力转换系统将直流电源的电力转换为行驶电动机的驱动电力,所述电力转换系统的特征在于包括:逆变器,所述逆变器被配置为向所述行驶电动机提供交流电力;电压转换器,所述电压转换器包括连接到所述直流电源的高电压端和连接到所述逆变器的低电压端,所述电压转换器包括开关元件和电抗器,并且被配置为对所述直流电源的电压进行降压,并且向所述逆变器提供所述直流电源的所述电压;和控制器,所述控制器被配置为控制所述电压转换器,所述控制器被配置为控制所述开关元件,使得在第一状态下所述低电压端的电压变成比所述高电压端的电压低,所述第一状态是流到所述逆变器的电流少于规定的电流阈值的状态和所述行驶电动机中消耗的电力少于规定的电力阈值的状态之中的至少一个状态,所述控制器被配置为控制所述开关元件,使得在第二状态下所述低电压端的所述电压变成与所述高电压端的所述电压相等,所述第二状态是流到所述逆变器的所述电流多于所述规定的电流阈值的状态和所述行驶电动机中消耗的所述电力多于所述规定的电力阈值的状态之中的至少一个状态。2.根据权利要求1所述的电力转换系统,其特征在于:所述控制器被配置为控制所述开关元件,使得在所述第一状态下所述低电压端的所述电压变成比所述高电压端的所述电压低,并且所述控制器被配置为控制所述开关元件,使得在第三状态下所述低电压端的所述电压变成与所述高电压端的所述电压相等,所述第三状态是流到所述逆变器的所述电流等于或多于所述规定的电流阈值的状态和所述行驶电动机中消耗的所述电力等于或多于所述规定的电力阈值的状态之中的至少一个状态。3.根据权利要求1所述的电力转换系统,其特征在于:所述控制器被配置为控制所述开关元件,使得在第四状态下所述低电压端的所述电压变成比所述高电压端的所述电压低,所述第四状态是流到所述逆变器的所述电流等于或少于所述规定的电流阈值的状态和所述行驶电动机中消耗的所述电力等于或少于所述规定的电力阈值的状态之中的至少一个状态,并且所述控制器被配置为控制所述开关元件,使得在所述第二状态下所述低电压端的所述电压变成与所述高电压端的所述电压相等。4.根据权利要求1至3中任一项所述的电力转换系统,其特征在于:基于所述行驶电动机的转速和所述行驶电动机的输出转矩确定所述规定的电流阈值和所述规定的电力阈值。5.根据权利要求1至4中任一项所述的电力转换系统,其特征在于:所述电压转换器是双向DC-DC转换器,所述双向DC-DC转换器包括:用于对所述高电压端的所述电压进行降压并且从所述低电压端输出所述高电压端的所述电压的降压功能,以及用于对所述低电压端的所述电压进行升压并且从所述高电压端输出所述低电压端的所述电压的升压功能,以及所述电压转换器的所述低电压端连接到充电端口。6.根据权利要求1至5中任一项所述的电力转换系统,其特征在于:所述控制器被配置为控制所述开关元件,使得在第五状态下所述低电压端的所述电压变成与所述高电压端的所述电压相等,而与流到所述逆变器的所述电流或在所述行驶电动机中消耗的所述电力的大小无关,所述第五状态是所述开关元件的温度超过第一规定的温度阈值的状态和所述电抗器的温度超过第二规定的温度阈值的状态之中的至少一个状态。7.根据权利要求1至6中任一项所述的电力转换系统,其特征在于:所述电压转换器包括连接在正电极线和负电极线之间的半导体元件,以及与所述半导体元件串联连接的过电流保护器件。8.根据权利要求1至6中任一项所述的电力转换系统,其特征在于:所述电抗器的磁饱和电流小于所述逆变器的最大输入电流。9.根据权利要求1至8中任一项所述的电力转换系统,其特征在于:所述电压转换器包括容纳所述开关元件的第一半导体模块,所述逆变器包括容纳电力转换开关元件的第二半导体模块,以及所述电抗器设置在所述第一半导体模块和所述第二半导体模块之间。10.一种电力转换系统的控制方法,所述电力转换系统将直流电源的电力转换为行驶电动机的驱动电力,所述电力转换系统包括:逆变器,所述逆变器被配置为向所述行驶电动机提供交流电力;电压转换器,所述电压转换器包括连接到所述直流电源的高电压端和连接到所述逆变器的低电压端,所述电压转换器包括开关元件和电抗器,并且被配置为对所述直流电源的电压进行降压并且向所述逆变器提供所述直流电源的所述电压;以及控制器,所述控制器被配置为控制所述电压转换器,所述控制方法的特征在于包括:由所述控制器控制所述开关元件,使得在第一状态下所述低电压端的电压变成比所述高电压端的电压低,所述第一状态是流到所述逆变器的电流少于规定的电流阈值的状态和所述行驶电动机中消耗的电力少于规定的电力阈值的状态之中的至少一个状态,以及由所述控制器控制所述开关元件,使得在第二状态下所述低电压端的所述电压变成与所述高电压端的所述电压相等,所述第二状态是流到所述逆变器的所述电流多于所述规定的电流阈值的状态和所述行驶电动机中消耗的所述电力多于所述规定的电力阈值的状态之中的至少一个状态。

百度查询: 丰田自动车株式会社 电力转换系统及电力转换系统的控制方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。