【发明授权】自相关测量装置_浜松光子学株式会社_201680048824.3 

申请/专利权人:浜松光子学株式会社

申请日:2016-08-24

发明/设计人:伊藤晴康;伊崎泰则;奥间惇治

公开(公告)日:2020-06-23

代理机构:北京尚诚知识产权代理有限公司

公开(公告)号:CN107923798B

代理人:杨琦;吕秀平

主分类号:G01J11/00(20060101)

地址:日本静冈县

分类号:G01J11/00(20060101);G02F1/37(20060101)

优先权:["20150826 JP 2015-166465"]

专利状态码:有效-授权

法律状态:2020.06.23#授权;2018.05.11#实质审查的生效;2018.04.17#公开

摘要:自相关测量装置1A包括第一反射部件10A、第二反射部件20A、聚光部30、非线性光学结晶40、检测部50、过滤部60、孔隙部61、延迟调整部70A和分析部80。入射脉冲光L0透过第二反射部件20A而入射至第一反射部件10A。在第一反射部件10A的第一反射面11和第二反射部件20A的第二反射面22反射的第一脉冲光L1以及在第一反射部件10A的第二反射面12和第二反射部件20A的第一反射面21反射的第二脉冲光L2,经由聚光部30入射至非线性光学结晶40。由非线性光学结晶40产生的二次谐波光LSH被检测部50检测。由此可以实现能够小型化的自相关测量装置。

主权项:1.一种自相关测量装置,其特征在于,包括:第一反射部件,其具有使入射脉冲光的一部分反射的第一反射面和使该入射脉冲光中透过该第一反射面的光反射的第二反射面;第二反射部件,其具有使在所述第一反射部件的所述第一反射面或所述第二反射面反射的光的一部分反射的第一反射面和使该光中透过该第一反射面的光反射的第二反射面;聚光部,其对在所述第一反射部件的所述第一反射面和所述第二反射部件的所述第二反射面反射的第一脉冲光以及在所述第一反射部件的所述第二反射面和所述第二反射部件的所述第一反射面反射的第二脉冲光进行聚光;非线性光学结晶,其配置于由所述聚光部产生的聚光位置,通过所述第一脉冲光和所述第二脉冲光的入射而产生二次谐波光;检测部,其对所述二次谐波光进行检测;延迟调整部,其使入射至所述非线性光学结晶的所述第一脉冲光与所述第二脉冲光之间的延迟时间变化;和分析部,其基于由所述延迟调整部设定的所述延迟时间与所述检测部的检测结果的关系,求取所述入射脉冲光的脉冲宽度。

全文数据:自相关测量装置技术领域[0001]本发明涉及基于脉冲光的自相关测量该脉冲光的脉冲宽度的自相关测量装置。背景技术[0002]在脉冲光的脉冲宽度短时(例如10皮秒以下的情况),在其脉冲宽度的测量中,采用使用通过该脉冲光的入射能够产生二次谐波光的非线性光学结晶的SHGSecondHarmonicGeneration,二次谐波)自相关测量装置。专利文献1、2和非专利文献1中记载了这样的自相关测量装置。[0003]现有的自相关测量装置包括具有分光器、固定反射部和可动反射部的迈克耳逊干涉仪。入射脉冲光由分光器2分支成为第一脉冲光和第二脉冲光。第一脉冲光被固定反射部反射而回到分光器,第二脉冲光被可动反射部反射而回到分光器。回到分光器的第一脉冲光和第二脉冲光经由分光器入射至非线性光学结晶。[0004]在第一脉冲光和第二脉冲光入射至的非线性光学结晶产生二次谐波光,该二次谐波光被检测部检测。可动反射部可移动,通过其移动,入射至非线性光学结晶的第一脉冲光与第二脉冲光之间的延迟时间发生变化。此外,由于该延迟时间的变化,检测部的检测结果发生变化。由此,能够基于该延迟时间与检测部的检测结果的关系分析入射脉冲光的脉冲宽度。[0005]现有技术文献[0006]专利文献[0007]专利文献1:日本特开平7-270246号公报[0008]专利文献2:日本专利第3736410号公报[0009]非专利文献:[0010]非专利文献1:长沼和则,“超短脉冲光的计测”,光学,第30卷,第12号,pp.834-8442001发明内容[0011]发明要解决的课题[0012]现有的自相关测量装置包括具有分光器等的迈克耳逊干涉仪,第一脉冲光和第二脉冲光从该分光器向彼此不同的方向出射。由此,现有的自相关测量装置的构成复杂且大型。[0013]本发明为了解决上述问题而提出,其目的在于提供能够实现小型化的自相关测量装置。[0014]用于解决课题的技术方案[0015]本发明的自相关测量装置包括:(1第一反射部件,其具有使入射脉冲光的一部分反射的第一反射面和使该入射脉冲光中透过该第一反射面的光反射的第二反射面;(2第二反射部件,其具有使从第一反射部件出射的光的一部分反射的第一反射面和使该光中透过该第一反射面的光反射的第二反射面;(3聚光部,其对在第一反射部件的第一反射面和第二反射部件的第二反射面反射的第一脉冲光和在第一反射部件的第二反射面和第二反射部件的第一反射面反射的第二脉冲光进行聚光;⑷非线性光学结晶,其配置于由聚光部产生的聚光位置,通过第一脉冲光和第二脉冲光的入射而产生二次谐波光;(5检测部,其对二次谐波光进行检测;(6延迟调整部,其使入射至非线性光学结晶的第一脉冲光与第二脉冲光之间的延迟时间变化;和⑵分析部,其基于由延迟调整部设定的延迟时间与检测部的检测结果的关系,求取入射脉冲光的脉冲宽度。[0016]发明效果[0017]根据本发明,可以提供能够实现小型化的自相关测量装置。附图说明[0018]图1是表示第一实施方式的自相关测量装置IA的构成的图。[0019]图2是表示由第一实施方式的自相关测量装置IA的检测部50求取的SHG自相关波形的一例的图。[0020]图3是表示第二实施方式的自相关测量装置IB的构成的图。[0021]图4是表示第三实施方式的自相关测量装置IC的构成的图。[0022]图5是表示第四实施方式的自相关测量装置ID的构成的图。[0023]图6是表示第五实施方式的自相关测量装置IE的构成的图。[0024]图7是表示由第五实施方式的自相关测量装置IE的检测部50求取的条纹分辨fringe-resolvedSHG自相关波形的一例的图。[0025]图8是表示第六实施方式的自相关测量装置IF的构成的图。具体实施方式[0026]以下参照附图详细说明用于实施本发明的方式。另外,附图的说明中对相同的部件标注相同的附图标记,省略重复说明。本发明并不限定于这些例示。[0027]第一实施方式)[0028]图1是表示第一实施方式的自相关测量装置IA的构成的图。自相关测量装置IA包括第一反射部件10A、第二反射部件20A、聚光部30、非线性光学结晶40、检测部50、过滤部60、孔隙部61、延迟调整部70A和分析部80。[0029]第一反射部件IOA包括:具有使入射脉冲光Lo的一部分反射的第一反射面11的第一平板13;具有使该入射脉冲光Lo中的透过第一反射面11的光反射的第二反射面12的第二平板14。第一平板13的第一反射面11和第二平板14的第二反射面12彼此相对,且彼此平行。第一反射面11与第二反射面12之间的光程长(S卩,第一平板13与第二平板14之间的间隔是可变的,可以由延迟调整部70A设定。第一平板13和第二平板14由对于入射脉冲光Lo为透明的材料例如合成石英、BK7形成。[0030]第二反射部件20A是包括使从第一反射部件IOA出射的光的一部分反射的第一反射面21和使该光中透过第一反射面21的光反射的第二反射面22的平板。第二反射部件20A的第一反射面21和第二反射面22彼此平行,但第一反射部件IOA的第一反射面11和第二反射面12不平行。第二反射部件20A由对于入射脉冲光Lo为透明的材料例如石英玻璃、BK7形成。[0031]入射脉冲光Lo透过第二反射部件20A而入射至第一反射部件10A。此时,将在第一反射部件IOA的第一反射面11和第二反射部件20A的第二反射面22反射的光作为第一脉冲光1^,将在第一反射部件IOA的第二反射面12和第二反射部件20A的第一反射面21反射的光作为第二脉冲光L2。在聚光部30,第一脉冲光Li和第二脉冲光L2各自的光束彼此不重叠。聚光部30对这些第一脉冲光Li和第二脉冲光L2进行聚光。构成聚光部30的聚光光学系统可以是透镜,也可以是凹面镜。[0032]非线性光学结晶40配置于由聚光部30产生的聚光位置,通过第一脉冲光L1和第二脉冲光L2的入射而产生二次谐波光Lsh。入射至非线性光学结晶40的第一脉冲光Li和第二脉冲光1^是彼此非同轴的。作为非线性光学结晶40,例如能够使用BBO〇3-BaB2〇4、LB0LiB3O5、KT0KTaO3、KDPKH2PO4等。此外,向非线性光学结晶40的第一脉冲光LdP第二脉冲光L2的入射设定成满足第一种相位匹配条件。[0033]过滤部60和孔隙部61设置于非线性光学结晶40与检测部50之间。过滤部60阻隔入射脉冲光Lo的波长成分基波成分),使二次谐波光Lsh透过。孔隙部61选择性地使从非线性光学结晶40出射的光中的基于第一脉冲光Li和第二脉冲光L2的相关的二次谐波光Lsh向检测部50通过。检测部50检测基于第一脉冲光L1和第二脉冲光L2的相关的二次谐波光Lsh的强度。作为构成检测部50的光检测器,例如使用光电倍增管、光电二极管等。[0034]延迟调整部70A通过使第一平板13与第二平板14之间的间隔变化,使第一反射部件IOA的第一反射面11与第二反射面12之间的光程长变化,由此,使入射至非线性光学结晶40的第一脉冲光L1与第二脉冲光1^之间的延迟时间τ变化。延迟调整部70A可以使第一平板13和第二平板14两者移动,也可以使第一平板13和第二平板14中的任一者移动。作为延迟调整部70Α,例如使用移动台、压电元件和扬声器等。根据这样的延迟调整部70Α,能够使延迟时间τ连续变化。[0035]分析部80取得通过延迟调整部70Α使延迟时间τ变化、并且设定成各延迟时间τ时的检测部50的检测结果(二次谐波光Lsh的强度Ishτ。分析部80基于延迟时间τ与二次谐波光强度Ish⑴的关系,求取由下述⑴式表示的SHG自相关函数G2T,求取入射脉冲光L0的脉冲宽度。It如下述2式所示是与入射脉冲光Lo的电场振幅Et的绝对值的平方成比例的值,即,是表示入射脉冲光Lo的强度的值,如下述3式所示进行标准化。t是时间变量。[0042]图2是表示由第一实施方式的自相关测量装置IA的检测部50求取的SHG自相关波形的一例的图。横轴是由延迟调整部70A设定的延迟时间(TimeDelayτ,对应于第一反射部件IOA的第一反射面11与第二反射面12之间的光程长。[0043]如该图所示,延迟时间τ为0时,入射至非线性光学结晶40的第一脉冲光L1与第二脉冲光1^的时间重叠最大,因此SHG自相关信号的强度Intensity最大。随着延迟时间τ的绝对值变大,入射至非线性光学结晶40的第一脉冲光L1与第二脉冲光L2的时间重叠变小,因此SHG自相关信号的强度也变小。在SHG自相关波形的半峰全宽与入射脉冲光Lo的脉冲宽度半峰全宽)之间,存在依赖于入射脉冲光Lo的脉冲波形的一定的关系。因此,能够基于SHG自相关函数的形状求取入射脉冲光Lo的脉冲宽度。另外,该方法被称为非共线SHG自相关法。[0044]本实施方式的自相关测量装置IA不是使将入射脉冲光Lo2分支后的第一脉冲光Li和第二脉冲光L2向彼此不同的方向出射,而是使两脉冲光成分向同方向出射,因此容易实现小型化。[0045]优选对在第一反射部件IOA和第二反射部件20A的各自中使光透过或反射的任意面施以电介质多层膜,由此调整第一脉冲光1^和第二脉冲光L2各自的强度,此外,优选调整两脉冲光成分间的强度比。通过这样操作,能够使由检测部50检测的二次谐波光Lsh的强度较大。[0046]例如,在第一反射部件IOA的第一平板13和第二平板14以及第二反射部件20A的任何面均没有形成电介质多层膜,使各面的反射率为4%。此外,使入射脉冲光Lo的强度为100mW。此时,第一脉冲光1^的强度为0.136mW,第二脉冲光1^的强度为0.125mW。[0047]相对于此,通过适当地施以电介质多层膜,使第一平板13的第一反射面11的反射率为40%,使第一平板13的另一面与第二反射部件20A相对的面)的反射率为0%,使第二平板14的第二反射面12的反射率为100%,使第二反射部件20A的第一反射面21的反射率为50%。不对第二反射部件20A的第二反射面22施以电介质多层膜,使第二反射面22的反射率为4%。此时,第一脉冲光1^的强度为8.8mW,第二脉冲光1^的强度为8.6mW。[0048]二次谐波光Lsh的强度与第一脉冲光L1的强度和第二脉冲光L2的强度的积成比例,因此通过如上所述适当地施以电介质多层膜,变大至约4450=8.8X8.6Λ0.136X0.125倍。[0049]第二实施方式)[0050]图3是表示第二实施方式的自相关测量装置IB的构成的图。自相关测量装置IB包括第一反射部件10B、第二反射部件20A、聚光部30、非线性光学结晶40、检测部50、过滤部60、孔隙部61、延迟调整部70B和分析部80。[0051]与图1所示的第一实施方式的自相关测量装置IA的构成相比较,图3所示的第二实施方式的自相关测量装置IB的不同点在于,代替第一反射部件10A,具有第一反射部件10B,代替延迟调整部70A,具有延迟调整部70B。[0052]第一反射部件IOB具有设置于第一反射面11与第二反射面12之间的折射率可变部件15。折射率可变部件15的折射率根据施加电压值而变化。作为折射率可变部件15,能够使用液晶、非线性光学结晶(例如LNLiNbO3和KTNKTa1-XNbxO3等),此时,能够使彼此相对的2个主面为第一反射面11和第二反射面12。此外,作为折射率可变部件15能够使用相位调制型的空间光调制器,此时,能够使空间光调制器的CMOS芯片部和玻璃基板端面为第一反射面11和第二反射面12。[0053]延迟调整部70B通过使施加于折射率可变部件15的电压值变化,使第一反射部件IOB的第一反射面11与第二反射面12之间的光程长变化,由此,使入射至非线性光学结晶40的第一脉冲光L1与第二脉冲光1^之间的延迟时间τ变化。延迟调整部70B能够使延迟时间τ连续且高速地变化。[0054]本实施方式的自相关测量装置IB也不是使将入射脉冲光Lo2分支后的第一脉冲光L1和第二脉冲光L2向彼此不同的方向出射,而是使两脉冲光成分向同方向出射,因此容易实现小型化。[0055]此外,在本实施方式中,优选通过对在第一反射部件IOB和第二反射部件20A的各自中使光透过或反射的任意面施以电介质多层膜,调整第一脉冲光Li和第二脉冲光L2各自的强度,此外,优选调整两脉冲光成分之间的强度比。通过这样操作,能够使由检测部50检测的二次谐波光Lsh的强度较大。[0056]第三实施方式)[0057]图4是表示第三实施方式的自相关测量装置IC的构成的图。自相关测量装置IC包括第一反射部件10A、第二反射部件20A、聚光部30、非线性光学结晶40、检测部50、过滤部60、孔隙部61、延迟调整部70C和分析部80。[0058]与图1所示的第一实施方式的自相关测量装置IA的构成进行比较,图4所示的第三实施方式的自相关测量装置IC的不同点在于,代替延迟调整部70A,具有延迟调整部70C。[0059]延迟调整部70C包括第一旋转台71和第二旋转台72。第一旋转台71使第二反射部件20A转动。第二旋转台72使第二反射部件20A、聚光部30、非线性光学结晶40、检测部50、过滤部60和孔隙部61—体地转动。第一旋转台71和第二旋转台72各自的转动中心是第二反射部件20A的第一反射面21中的第一脉冲光1^和第二脉冲光1^各自的出射位置的中心位置。[0060]通过第一旋转台71和第二旋转台72各自的转动,在第二反射部件20A只转动角度Θ时,聚光部30、非线性光学结晶40、检测部50、过滤部60和孔隙部61—体地只转动角度2Θ。包括第一旋转台71和第二旋转台72的延迟调整部70C使该转动的角度Θ变化,由此使第二反射部件20A的第一反射面21与第二反射面22之间的第一脉冲光L1的光程长变化,由此,使入射至非线性光学结晶40的第一脉冲光Li与第二脉冲光L2之间的延迟时间τ变化。[0061]本实施方式的自相关测量装置IC也不是使将入射脉冲光Lo2分支后的第一脉冲光L1和第二脉冲光L2向彼此不同的方向出射,而是使两脉冲光成分向同方向出射,因此容易实现小型化。[0062]第四实施方式)[0063]图5是表示第四实施方式的自相关测量装置ID的构成的图。自相关测量装置ID包括第一反射部件10D、第二反射部件20D、聚光部30、非线性光学结晶40、检测部50、过滤部60、孔隙部61、62、延迟调整部70D和分析部80。[0064]与图1所示的第一实施方式的自相关测量装置IA的构成相比较,图5所示的第四实施方式的自相关测量装置ID的不同点在于,代替第一反射部件10A,具有第一反射部件10D,代替第二反射部件20A,具有第二反射部件20D。此外,第四实施方式的自相关测量装置ID的不同点在于,还具有孔隙部62,代替延迟调整部70A,具有延迟调整部70D。[0065]第一反射部件IOD是具有彼此相对的2个主面作为第一反射面11和第二反射面12的平板,第一反射面11和第二反射面12彼此是不平行的。第二反射部件20D是具有彼此相对的2个主面作为第一反射面21和第二反射面22的平板,第一反射面21和第二反射面22彼此是不平行的。[0066]延迟调整部70D通过使第一反射部件IOD在与第一反射面11平行的方向上移动,能够使第一反射部件IOD的第一反射面11与第二反射面12之间的第二脉冲光L2的光程长变化。延迟调整部70D通过使第二反射部件20D在与第一反射面21平行的方向上移动,能够使第二反射部件20D的第一反射面21与第二反射面22之间的第一脉冲光L1的光程长变化。延迟调整部70D通过使第一反射部件IOD和第二反射部件20D的两者或任一者移动,使入射至非线性光学结晶40的第一脉冲光Li与第二脉冲光L2之间的延迟时间τ变化。[0067]孔隙部62设置于第二反射部件20D与非线性光学结晶40之间,优选设置于第二反射部件20D与聚光部30之间。孔隙部62使在第一反射部件IOD的第一反射面11和第二反射部件20D的第二反射面22反射的第一脉冲光L1通过,并且使在第一反射部件IOD的第二反射面12和第二反射部件20D的第一反射面21反射的第二脉冲光L2通过。另一方面,孔隙部62阻隔在第一反射部件IOD的第一反射面11和第二反射部件20D的第一反射面21反射的脉冲光L3,并且阻隔在第一反射部件IOD的第二反射面12和第二反射部件20D的第二反射面22反射的脉冲光Uu即,孔隙部62使在相关测量时成为噪声的脉冲光L3和脉冲光L4不入射至非线性光学结晶40。[0068]本实施方式的自相关测量装置ID也不使将入射脉冲光Lo2分支后的第一脉冲光Li和第二脉冲光1^向彼此不同的方向出射,而使两脉冲光成分向同方向出射,因此容易实现小型化。[0069]第五实施方式)[0070]图6是表示第五实施方式的自相关测量装置IE的构成的图。自相关测量装置IE包括第一反射部件10A、第二反射部件20A、聚光部30、非线性光学结晶40、检测部50、过滤部60、孔隙部63、延迟调整部70A和分析部80。[0071]与图1所示的第一实施方式的自相关测量装置IA的构成相比较,图6所示的第五实施方式的自相关测量装置IE的不同点在于,入射脉冲光Lo的光束径的大小不同,代替孔隙部61具有孔隙部63,而且分析部80的处理内容不同。[0072]在第一〜第四实施方式中,入射脉冲光Lo的光束径是从第二反射部件出射的第一脉冲光Li和第二脉冲光L2各自的光束在空间上不重叠的程度。相对于此,在第五实施方式中,入射脉冲光Lo的光束径是从第二反射部件出射的第一脉冲光Li和第二脉冲光L2各自的光束在空间上彼此重叠的程度,[0073]孔隙部63设置在第二反射部件20A与非线性光学结晶40之间,优选设置在第二反射部件20A与聚光部30之间。孔隙部63选择性地使第一脉冲光1^和第二脉冲光L2各自的光束在空间上彼此重叠的部分通过。[0074]非线性光学结晶40配置于由聚光部30产生的聚光位置,通过第一脉冲光L1和第二脉冲光L2的入射而产生二次谐波光Lsh。在本实施方式中,在非线性光学结晶40产生的二次谐波光Lsh不仅是基于第一脉冲光1^和第二脉冲光L2的相关的二次谐波光,也包括仅基于第一脉冲光1^的二次谐波光和仅基于第二脉冲光L2的二次谐波光。检测部50检测这些二次谐波光的强度。[0075]分析部80取得利用延迟调整部70A使延迟时间τ变化并且设定成各延迟时间τ时的检测部50的检测结果二次谐波光Lsh的强度Isht。然后,分析部80基于延迟时间τ与二次谐波光强度Ishτ的关系,求取由下述4式表示的SHG自相关函数S2τ,求取入射脉冲光Lo的脉冲宽度。该式的右边第三项由下述5式表示,右边第四项由下述6式表示。ω〇是入射脉冲光的中心角频率。[0082]图7是表示由第五实施方式的自相关测量装置IE的检测部50求取的SHG自相关波形的一例的图。横轴是由延迟调整部70Α设定的延迟时间τ,对应于第一反射部件IOA的第一反射面11与第二反射面12之间的光程长。[0083]如该图所示,在延迟时间τ为0时,入射至非线性光学结晶40的第一脉冲光L1和第二脉冲光1^2的时间上的重叠最大,因此SHG自相关函数的包络函数的值最大。随着延迟时间τ的绝对值变大,入射至非线性光学结晶40的第一脉冲光L1和第二脉冲光L2的时间上的重叠变小,因此包络函数的值也变小。在包络函数的半峰全宽与入射脉冲光Lo的脉冲宽度半峰全宽)之间,存在依赖于入射脉冲光Lo的脉冲波形的一定的关系。由此,能够基于包络函数的形状求取入射脉冲光Lo的脉冲宽度。另外,该方法被称为条纹分辨SHG自相关法。[0084]本实施方式的自相关测量装置IE也不使将入射脉冲光Lo2分支后的第一脉冲光Li和第二脉冲光1^向彼此不同的方向出射,而使两脉冲光成分向同方向出射,因此容易实现小型化。[0085]第六实施方式)[0086]图8是表示第六实施方式的自相关测量装置IF的构成的图。与图1所示的第一实施方式的自相关测量装置IA的构成相比较,图8所示的第六实施方式的自相关测量装置IF的不同点在于,作为检测部50使用分光器,而且分析部80的处理内容不同。[0087]本实施方式中,检测部50对基于第一脉冲光L1和第二脉冲光L2的相关的二次谐波光Lsh的光谱进行检测。分析部80取得利用延迟调整部70A使延迟时间τ变化并且设定成各延迟时间τ时的检测部50的检测结果(二次谐波光Lsh的光谱)。然后,分析部80基于延迟时间τ与二次谐波光的光谱的关系,求取入射脉冲光Lo的振幅分布和相位分布两者的信息。另外,该方法被称为频率分辨光栅。[0088]其它实施方式)[0089]本发明并不限定于上述实施方式,能够进行各种变形。例如,在第五和第六实施方式中,作为使入射至非线性光学结晶40的第一脉冲光L1与第二脉冲光1^之间的延迟时间τ变化的方法,能够采用在第二〜第四实施方式中说明的方法。[0090]上述实施方式的自相关测量装置构成为包括:(1第一反射部件,其具有使入射脉冲光的一部分反射的第一反射面和使该入射脉冲光中透过该第一反射面的光反射的第二反射面;(2第二反射部件,其具有使从第一反射部件出射的光的一部分反射的第一反射面和使该光中透过该第一反射面的光反射的第二反射面;(3聚光部,其对在第一反射部件的第一反射面和第二反射部件的第二反射面反射的第一脉冲光和在第一反射部件的第二反射面和第二反射部件的第一反射面反射的第二脉冲光进行聚光;(4非线性光学结晶,其配置于由聚光部产生的聚光位置,通过第一脉冲光和第二脉冲光的入射而产生二次谐波光;5检测部,其对二次谐波光进行检测;(6延迟调整部,其使入射至非线性光学结晶的第一脉冲光与第二脉冲光之间的延迟时间变化;和⑵分析部,其基于由延迟调整部设定的延迟时间与检测部的检测结果的关系,求取入射脉冲光的脉冲宽度。[0091]在上述装置中可以采用下述构成:对在第一反射部件和第二反射部件的各自中使光透过或反射的任意面,施以用于调整第一脉冲光与第二脉冲光之间的强度比的电介质多层膜。[0092]上述装置中可以采用下述构成:第一反射部件包括:具有第一反射面的第一平板;和与该第一平板平行地配置且具有第二反射面的第二平板,延迟调整部使第一平板与第二平板之间的间隔变化而使延迟时间变化。[0093]此外,上述装置中可以采用下述构成:第一反射部件包括折射率可变部件,其设置于第一反射面与第二反射面之间且折射率根据施加电压值而变化,延迟调整部使施加于折射率可变部件的电压值变化而使延迟时间变化。[0094]上述装置中可以采用下述构成:入射至非线性光学结晶的第一脉冲光和第二脉冲光彼此是非同轴的,在非线性光学结晶与检测部之间设置有孔隙部,该孔隙部选择性地使从非线性光学结晶出射的光中基于第一脉冲光和第二脉冲光的相关的二次谐波光向检测部通过,检测部检测二次谐波光的强度。此时,能够通过非共线SHG自相关法求取入射脉冲光的脉冲宽度。[0095]在上述装置中可以采用下述构成:在第二反射部件与非线性光学结晶之间设置有孔隙部,该孔隙部选择性地使第一脉冲光和第二脉冲光各自的光束在空间上彼此重叠的部分通过,检测部检测二次谐波光的强度。此时,能够通过条纹分辨SHG自相关法求取入射脉冲光的脉冲宽度。[0096]在上述装置中可以采用下述构成:入射至非线性光学结晶的第一脉冲光和第二脉冲光彼此是非同轴的,在非线性光学结晶与检测部之间设置有孔隙部,该孔隙部选择性地使从非线性光学结晶出射的光中基于第一脉冲光和第二脉冲光的相关的二次谐波光向检测部通过,检测部检测二次谐波光的光谱。此时,能够通过频率分解光栅求取入射脉冲光的振幅分布和相位分布两者的信息。[0097]工业上的可利用性[0098]本发明可以用作能够小型化的自相关测量装置。[0099]附图标记说明[0100]IA〜IF……自相关测量装置,10A、IOBUOD……第一反射部件,11……第一反射面,12……第二反射面,13……第一平板,14……第二平板,15……折射率可变部件,20A、20D……第二反射部件,21……第一反射面,22……第二反射面,30……聚光部,40……非线性光学结晶,50……检测部,60……过滤部,61〜63……孔隙部,70A〜70D……延迟调整部,71……第一旋转台,72……第二旋转台,80……分析部,Lo……入射脉冲光,L1……第一脉冲光,L2......第二脉冲光,Lsh......二次谐波光D

权利要求:1.一种自相关测量装置,其特征在于,包括:第一反射部件,其具有使入射脉冲光的一部分反射的第一反射面和使该入射脉冲光中透过该第一反射面的光反射的第二反射面;第二反射部件,其具有使从所述第一反射部件出射的光的一部分反射的第一反射面和使该光中透过该第一反射面的光反射的第二反射面;聚光部,其对在所述第一反射部件的所述第一反射面和所述第二反射部件的所述第二反射面反射的第一脉冲光以及在所述第一反射部件的所述第二反射面和所述第二反射部件的所述第一反射面反射的第二脉冲光进行聚光;非线性光学结晶,其配置于由所述聚光部产生的聚光位置,通过所述第一脉冲光和所述第二脉冲光的入射而产生二次谐波光;检测部,其对所述二次谐波光进行检测;延迟调整部,其使入射至所述非线性光学结晶的所述第一脉冲光与所述第二脉冲光之间的延迟时间变化;和分析部,其基于由所述延迟调整部设定的所述延迟时间与所述检测部的检测结果的关系,求取所述入射脉冲光的脉冲宽度。2.如权利要求1所述的自相关测量装置,其特征在于:对在所述第一反射部件和所述第二反射部件的各自中使光透过或反射的任意面,施以用于调整所述第一脉冲光与所述第二脉冲光之间的强度比的电介质多层膜。3.如权利要求1或2所述的自相关测量装置,其特征在于:所述第一反射部件包括:具有所述第一反射面的第一平板;和与该第一平板平行地配置且具有所述第二反射面的第二平板,所述延迟调整部使所述第一平板与所述第二平板之间的间隔变化而使所述延迟时间变化。4.如权利要求1或2所述的自相关测量装置,其特征在于:所述第一反射部件包括折射率可变部件,该折射率可变部件设置于所述第一反射面与所述第二反射面之间且折射率根据施加电压值而变化,所述延迟调整部使施加于所述折射率可变部件的电压值变化而使所述延迟时间变化。5.如权利要求1〜4中任一项所述的自相关测量装置,其特征在于:入射至所述非线性光学结晶的所述第一脉冲光和所述第二脉冲光彼此是非同轴的,在所述非线性光学结晶与所述检测部之间设置有孔隙部,该孔隙部选择性地使从所述非线性光学结晶出射的光中基于所述第一脉冲光和所述第二脉冲光的相关的所述二次谐波光向所述检测部通过,所述检测部检测所述二次谐波光的强度。6.如权利要求1〜4中任一项所述的自相关测量装置,其特征在于:在所述第二反射部件与所述非线性光学结晶之间设置有孔隙部,该孔隙部选择性地使所述第一脉冲光和所述第二脉冲光各自的光束在空间上彼此重叠的部分通过,所述检测部检测所述二次谐波光的强度。7.如权利要求1〜4中任一项所述的自相关测量装置,其特征在于:入射至所述非线性光学结晶的所述第一脉冲光和所述第二脉冲光彼此是非同轴的,在所述非线性光学结晶与所述检测部之间设置有孔隙部,该孔隙部选择性地使从所述非线性光学结晶出射的光中基于所述第一脉冲光和所述第二脉冲光的相关的所述二次谐波光向所述检测部通过,所述检测部检测所述二次谐波光的光谱。

百度查询: 浜松光子学株式会社 自相关测量装置

vip会员权益升级
价格优惠/年费监控/专利管家/定制微网站 关闭