买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】用于制造掺杂的碳层的涂料源_攀时复合材料有限公司_201680016783.X 

申请/专利权人:攀时复合材料有限公司

申请日:2016-03-15

公开(公告)日:2020-07-24

公开(公告)号:CN107406971B

主分类号:C23C14/32(20060101)

分类号:C23C14/32(20060101);C23C14/34(20060101);C23C14/06(20060101);H01J37/32(20060101);H01J37/34(20060101)

优先权:["20150319 AT GM70/2015"]

专利状态码:有效-授权

法律状态:2020.07.24#授权;2017.12.22#实质审查的生效;2017.11.28#公开

摘要:本发明涉及一种供用于制造掺杂的碳层的物理气相沉积用的涂料源;所述涂料源由粉末组分通过烧结过程制得并包含至少75摩尔%的作为基质材料的碳和1摩尔%至25摩尔%的至少一种掺杂剂。

主权项:1.一种用于制造供掺杂的碳层的物理气相沉积用的涂料源的方法,其中所述涂料源包含比例至少达75摩尔%的作为基质材料的碳和比例在1摩尔%至25摩尔%范围内的至少一种掺杂剂,所述掺杂是选自由钛、钒、铬、锆、铌、钼、铪、钽、钨、硅组成的群组的元素、半金属、金属氧化物、半金属氧化物、金属氮化物、半金属氮化物、金属硼化物、半金属硼化物、金属硅化物或半金属硅化物,其中掺杂剂以微细颗粒形式均匀地嵌入碳基质中,涂料源的微结构包括至少两个不同的结晶相,其中至少一个相包含掺杂剂,所述涂料源的密度大于理论密度的80%,其特征在于所述方法至少包括以下制造步骤:制造由含碳粉末和含掺杂剂的粉末组成的粉末混合物,其中所述含碳粉末和所述含掺杂剂的粉末具有直径小于50μm的平均粒径通过直接通电烧结或通过热压,在1300℃至3000℃的温度下以及5至50MPa的压力下烧结所述粉末混合物所述烧结成型体进行机械加工以得到涂料源。

全文数据:用于制造掺杂的碳层的涂料源技术领域[0001]本发明涉及一种用于掺杂的碳层,特别是掺杂的无定形碳层的物理气相沉积的涂料源以及一种用于所述涂料源的制造方法。背景技术[0002]无定形碳层无定形类金刚石碳,DLC是含碳层,与石墨层(其具有晶体结构和sp2-杂化的碳原子和金刚石层其具有晶体结构和sp3-杂化的碳原子相比,其在结构上由sp2-和sp3-杂化的碳原子的无定形网络组成。无定形碳层可以是不含氢的或含氢并且掺杂有其它元素。无定形碳层的各种层类型被划分为VDI2840VereinDeutscherIngenieure,Kohlenstoffschichten,Grundlagen,SchichttypenundEigenschaften。由于石墨状以及类金刚石的结构,无定形碳层的许多性质介于石墨与金刚石之间。无定形碳层的特征在于类金刚石硬度硬度高达90GPa,同时具有高耐磨性、低摩擦系数和良好的层粘合性。因此,这些层尤其越来越多地用于摩擦学应用,例如作为汽车部件的减摩和耐磨涂层。此外,无定形碳层具有优异的生物相容性。[0003]除了这些有利的性质外,缺点是有限的热稳定性,因为无定形碳层不佳的耐氧化性导致约350°C的有限的使用温度。[0004]—般情况下,无定形碳层通常通过化学或物理气相沉积法沉积成层厚度为几微米的薄层。可以提及的重要的化学气相沉积CVD法是等离子体辅助化学气相沉积PA-CVD,也称为等离子体使能CVD,其中化学沉积通过等离子体辅助,通常借由外部高频交流电压制得。[0005]最广泛地用于制得无定形碳层的物理气相沉积PVD法是磁控管阴极雾化磁控管派射沉积和电弧方法arc-PVD,也称为电弧蒸发)。在磁控管阴极雾化中,经等离子体离子化的工作气体例如氩或含碳气体被加速到腔室中由涂层材料形成的靶上,由此涂层材料的颗粒被敲击出来,转入气相中并从气相沉积到待涂覆的基底上。在靶的有效表面附近施加附加的磁场以提高溅射速率从而加速涂覆操作。在电弧蒸发方法中,作为阴极提供的涂层材料由跨过阴极迁移的电弧局部熔化和蒸发。部分电离的涂层材料蒸气任选地在额外施加的电势辅助下从阴极扩散,并在待涂覆的基底表面上冷凝。因为石墨电导率有强烈的温度依赖性,所以通过石墨阴极的电弧蒸发来制得无定形碳层是非常困难的。因为电弧的移动性有限,所以电弧保持在一处的钉扎效应经常发生,由此石墨阴极的均匀烧蚀受到阻碍。PVD方法优于CVD方法之处在于,在PVD方法中,基底的热应力通常比CVD方法更低,因此相对热敏材料也可以通过PVD方法进行涂覆。当使用反应气体时,与工作气体的化学反应也可能在PVD方法中发生。[0006]无定形碳层的性质是多样的,并且可以通过氢含量的变化和合适的掺杂在宽范围内设定。通常,金属例如钨、钛或钒形成碳化物的金属和例如金、铜或银形成非碳化物的金属)以及非金属元素例如硅、氧、氮、氟和硼)用作掺杂材料掺杂剂)。因此,例如,可以通过掺杂硅、钛、铬、钨或钼来影响碳层的热稳定性、耐磨性和摩擦系数,掺杂剂的比例通常小于25摩尔%摩尔百分比)。[0007]目前,高品质的掺杂的无定形碳层的制造伴随着许多挑战。首先,涂覆方法的复杂性显著提高。在CVD方法中,掺杂通过所需掺杂剂的化合物的额外汽化来实现在掺杂钛的无定形碳层的情况下,例如通过TiCl4的汽化),在PVD方法的情况中,通过石墨和元素靶或阴极例如额外的钛涂料源)的平行雾化共溅射)。使用多个涂料源时的特定缺点是施加层的均匀性差;此外,通常实现相对较低的生长率。在掺杂的碳层的制造中,与PVD方法相比,CVD方法的缺点在于许多重要的掺杂剂(如钼或钨)不存在于合适的液体或气体化合物中。这是与PVD方法相比的缺点之一。[0008]为了提高层均匀性,优先方法为将所需的涂层材料与由复合材料组成的靶或阴极结合在一起Chaus等人,《在脉冲阴极弧等离子体中沉积的掺杂铜的类金刚石碳涂层的表面、微结构和光学性能(Surface,microstructureandopticalpropertiesofcopper-dopeddiamond-likecarboncoatingdepositedinpulsedcathodicarcplasma»,《金刚石及相关材料DiamondRelatedMaterials》422014,第64-70页)。在Chaus等人中,使用由掺杂剂铜制得的杆直径6mm嵌入其中的由石墨直径32mm组成的圆柱形阴极靶称为插塞阴极)。然而,所制得的层的品质不能满足工业应用的要求,因为在涂层中仍然发生汽化的涂层材料的组成随时间变化导致的不均匀性。此外,因为石墨部位和铜杆的汽化速率不同,所以阴极的烧蚀是不均匀的,从而导致阴极的寿命缩短。[0009]其中通过掺杂剂熔体或包含掺杂剂的气相渗透有由石墨组成的多孔主要元素的靶也是己知的。为了渗透性,石墨主要元素必须具有开孔结构,因此在渗透的石墨靶的情况下,选择的掺杂剂的比例不能低于特定阈值。如果过早地停止渗透以设定低含量的掺杂剂,则保持高比例的孔隙率。另外的缺点在于由于靶中掺杂剂的连续网络,在涂覆方法中出现材料的烧蚀的不均匀性。[0010]在JP2〇05〇6〇765中给出涂料源的一个实例,其中石墨和掺杂剂组合在一个单元中。关于涂料源的组成和关于制造方法的更精确的信息,例如靶是以插塞阴极形式还是以渗透靶形式,是不存在的。发明内容[0011]本发明的一个目的是提供一种供用于制造掺杂的碳层,特别是掺杂的无定形碳层的物理气相沉积用的涂料源,在此情况中,避免或减少了使用多种涂料源时出现的上述缺点。涂料源尤其应允许掺杂剂在沉积的碳层中的非常均匀的分布。另外,在电弧蒸发中发生局部增加的汽化速率的趋势不应存在。本发明的另一个目的是提供一种用于该涂料源的制造方法。[0012]该目的通过如权利要求1所述的用于制造供掺杂的碳层的气相沉积用的涂料源的方法以及通过权利要求8所述的掺杂的涂料源来实现。本发明的有利实施例是从属权利要求的主题。[0013]本发明的掺杂的涂料源通过由含碳粉末或含碳粉末混合物和含掺杂剂的粉末或含掺杂剂的粉末混合物组成的粉末混合物的烧结来制得。其包含摩尔比例至少达75摩尔%的作为基质材料的碳和摩尔比例在1摩尔%至25摩尔%,优选地1摩尔%至20摩尔%,尤其优选地2摩尔%至10摩尔%范围内的至少一种掺杂剂。至少一种掺杂剂的摩尔比例在文中可以有利地小于5摩尔%。除了掺杂剂外,常见的与制造相关的杂质(例如硫可以存在于涂料源中,杂质的量通常小于lOOOppn。掺杂剂用于实现使用涂料源沉积的碳层的靶向修饰。[0014]掺杂剂可以是金属或半金属。掺杂剂也可以是金属或半金属的氧化物、氮化物、硼化物或硅化物。特别地,金属钛、钒、铬、锆、铌、钼、铪、钽、钨和半金属硅可以作为掺杂剂。此外,金属钛、钒、铬、锆、铌、钼、铪、钽、钨的氧化物、氮化物、硼化物或硅化物或半金属硅的氧化物、氮化物及硼化物可以作为掺杂剂。[0015]在烧结过程中,掺杂剂可以以基本不变的形式存在于涂料源中,或者可以与基质材料碳发生化学反应。掺杂剂也可以以掺杂剂的碳化物的形式引入基质材料中,例如作为金属碳化物或半金属碳化物。[0016]关于掺杂剂,在本专利申请中参考除碳之外,在不考虑任何杂质下,存在于涂料源中的一种或多种元素或化合物。如果使用掺杂材料的碳化物的粉末或在烧结操作期间掺杂材料与碳之间的化学反应制得涂料源,为了本发明的目的,术语掺杂剂是指掺杂材料而不是掺杂材料的碳化物。例如,如果涂料源由金属碳化物或半金属碳化物组成的起始粉末制成,则为了本发明的目的,涂料源的掺杂剂考虑使用相应的金属或半金属,而不是金属碳化物或半金属碳化物。当使用在制造过程期间与碳反应的金属或半金属粉末时,类似的情况适用。为了本发明的目的,掺杂剂在文中也可考虑使用相应的金属或半金属,而不是金属或半金属的碳化物。两种涂料源在涂覆过程中产生掺杂有相应金属或半金属的碳层。[0017]涂料源中的掺杂可以但不一定必须与通过涂料源沉积的碳层中的掺杂相同。由于在涂覆过程中发生的各种工艺,例如与工艺气体的化学反应,沉积的掺杂的碳层的化学组成或沉积碳层中掺杂材料与碳之间的比例可能与涂料源中的掺杂不同。[0018]术语涂料源尤其是指磁控管阴极雾化中的靶或电弧蒸发中的阴极。[0019]因此,本发明的关键概念是掺杂剂以微细颗粒形式嵌入碳基质中。而这通过烧结粉末组分制造涂料源来实现。因此,碳石墨)和掺杂剂不像现有技术那样存在于分开的涂料源中或涂料源中的宏观分开区域中,例如在插塞阴极的情况下或在通过渗透制造的涂料源的情况下。本发明的掺杂的涂料源简化了制造并显著地提高了利用其沉积的掺杂的碳层的品质。虽然在传统涂料源分开的石墨和掺杂剂靶或阴极的情况下,每个单独的涂料源的操作参数必须被单独地监测以实现大致均匀的掺杂层,但是在本发明的情况下,碳和掺杂剂是从相同的涂料源汽化或雾化。因此,只需要对单个涂料源的操作参数进行调节。基质材料与掺杂剂之间的汽化速率的比率在很大程度上与时间无关。此外,汽化材料的组成也在很大程度上与位置无关,并且在待涂覆的基材表面上几乎不随位置变化。因此,可以避免现有技术中发生的问题,特别是在大面积基材的涂覆中,其中由石墨和掺杂剂组成的涂料源位于不同的位置,源自单独的涂料源的元素不均匀地沉积在待涂覆的基材区域上。[0020]另一个优点是,在电弧蒸发的情况下,被配置成阴极的涂料源的烧蚀更均匀地进行。含掺杂剂的颗粒作为阴极微结构中的干扰元素,并且对阴极表面上电弧的运行特性产生积极影响。因此,电弧有时被中断,并在另一点重新点燃。电弧更好的运行特性也提高了沉积层的品质。在根据本发明的阴极的情况下,钉扎效应更少发生,因此与纯石墨阴极的情况相比,出现不太强烈的局部愚蠢熔融点,并且以溉射液滴形式的沉积以小规模发生。[0021]涂料源的微结构可以包括至少两个不同的结晶相,其中至少一个相包含掺杂剂。因此,含掺杂剂的颗粒可以在基质材料碳的相中形成单独的结晶相。掺杂剂可以与碳发生化学反应,或以不与碳反应的形式存在。为了本发明的目的,含掺杂剂的颗粒可以是其中掺杂剂以与碳反应的形式存在的颗粒或其中掺杂剂以不与碳反应的形式存在的颗粒。[0022]在一个优选的实施例中,含掺杂剂的颗粒的平均粒径小于5〇wn,特别地小于20M!。含掺杂剂的颗粒在宏观上在ram范围内的长度尺度上均匀分布在涂料源的微结构中。含掺杂剂的颗粒的平均间距优选地小于50wn,特别地小于20um。碳基质中掺杂剂的小尺寸和细分散产生非常均匀的组合物,所述组合物不随时间过去因涂层材料汽化或雾化而变化;因此可以沉积具有分布非常均匀的掺杂剂的碳层。[0023]如技术领域中已知的,含掺杂剂的颗粒的分布、平均粒径和平均间距是借助于样品的横截面确定的。文中将所得表面嵌入树脂中,研磨,抛光并使用扫描电子显微镜或使用光学显微镜作为替代物进行检测并进行定量评价。出于本发明的目的,含掺杂剂的颗粒的均匀分布意指,当在扫描电子显微镜下检测样品的横截面并计数图像的各种代表性部分中含掺杂剂的颗粒的数量时,图像每个部分的含掺杂剂的颗粒的数量的分布频率的散射小。举例来说,如果对于图像部分的尺寸选择边长约为含掺杂剂的颗粒的平均粒径25倍的正方形并在一系列十个不同的图像部分中确定完全位于该图像部分内的含掺杂剂的颗粒的数量,那么在每个图像部分的每种情况下,各个图像部分中的含掺杂剂的颗粒的数量偏离每个图像部分的含掺杂剂的颗粒的平均数量由十个图像部分确定不超过3倍。[0024]本发明的涂料源以靶或阴极的形式用于掺杂的碳层,特别是掺杂的无定形碳层的物理气相沉积。优选地将含碳的工艺气体例如乙炔或甲烷用于涂覆方法中。[0025]本发明还提供了上述涂料源的制造方法。为了制造该涂料源,将含碳粉末和包含所需掺杂剂的粉末的粉末混合物作为原料。对于含碳粉末,可以使用由天然或合成石墨、焦炭、无定形碳或炭黑组成的粉末或粉末混合物。石墨、焦炭和炭黑具有石墨晶体结构;在单个晶体的无缺陷和尺寸上存在差异。术语含掺杂剂的粉末还包括包含掺杂剂的粉末混合物,特别地由掺杂剂的碳化物组成的粉末或粉末混合物。为了制造用于沉积掺杂有金属或半金属的碳层的涂料源,可以使用相应的金属或半金属的粉末。然而,也可以使用相应金属或半金属的碳化物粉末。由该碳化物粉末制成的涂料源还可以在涂覆过程中产生掺杂有相应金属或半金属的碳层。如果需要用于沉积具有多种掺杂剂的碳层的涂料源,则粉末混合物可以包含多种掺杂剂的组分。[0026]可以将起始粉末干磨或湿磨,并在混合室中强烈混合。研磨操作可以通过引入研磨介质进行,通过这种方式,粉碎聚集体和颗粒块,实现混合组分的均匀分布并且加速混合操作。获得的粉末混合物优选地具有直径小于50wn的平均粒径。含碳粉末和或含掺杂剂的粉末优选地具有直径小于50wn的平均粒径,因此可以实现掺杂剂在涂料源中非常均匀的分布。掺杂剂与含碳粉末之间的合适的混合比例被设定为使得在烧结过程后,得到具有比例至少达75摩尔%的碳和比例在1摩尔%至25摩尔%,特别地1摩尔%至20摩尔%范围内的至少一种掺杂剂的成型体。[0027]在研磨过程后,将粉末混合物引入模制工具中,例如引入石墨模具中,并在适合的气氛中在130TC至3000°C的温度下烧结。烧结过程,特别地在惰性或还原性气氛中或在减压下进行。优选地,烧结过程通过压力来辅助,即烧结通过在至少IMPa,优选地5至50MPa的施加机械压力下压实粉末混合物来进行。机械压力有利地在加热期间逐步施加并保持一定时间。涂料源的有利且特别廉价的烧结方法是快速热压法,例如通过加热导体加热的热压或感应加热热压,或借由直接通电进行烧结法例如火花等离子体烧结)。但是在直接通电进行烧结的情况下,通过电流流过粉末在内部产生热量,在热压的情况下,从外部引入热量。这些方法的特点是高加热和冷却速率以及短加工时间。因此,可以获得尤其具有理论密度的至少8〇%,优选地至少90%的高密度的成型体。如果粉末混合物在烧结操作期间被单轴压制,则获得其中微结构具有在与压制方向垂直的方向上对齐的取向结构的成型体,g口微结构具有优先取向。烧结成型体可以任选地在烧结后在不额外施加外部压力下在2〇〇TC至3000°C的温度下进行热处理,从而实现石墨化。高温处理的结果是石墨晶体的尺寸和比例增加;此外,成型体的导热性和导电性提高。同时,由于可能的杂质(除了所需的掺杂剂)汽化,成型体变得更纯净。[0028]最后,烧结成型体例如通过切割工具以机械方式加工,以得到涂料源的所需最终形状。[0029]与纯石墨涂料源的制造相比,本发明的掺杂的石墨涂料源的制造具有重要的优点。因为需要额外的粘合剂基体来实现碳粉的内聚,所以纯碳石墨难以烧结。具有高碳含量的沥青或聚合物通常用于此目的,并且在热处理步骤中将它们转化为碳。在掺杂的碳涂料源的制造中,添加掺杂剂有助于烧结过程,部分地通过掺杂剂与碳的反应。此外,获得了成型体的更好的致密化。附图说明[0030]下面借助于三个工作实例和相关的图来说明本发明。工作实例1涉及掺杂有半金属硅的涂料源的变体,工作实例2涉及掺杂有金属钛的涂料源并且工作实例3涉及掺杂有化合物二硼化铬的涂料源。具体实施方式[0031]工作实例1:[0032]对于工作实例1,由石墨C与硅(Si的粉末混合物制造具有75mm的直径和5mm的厚度的圆形靶。对于原料,使用约1•5kg混合比例为1090摩尔%的3:1粉与C粉的混合物平均粒径d50约10wn,在添加51异丙醇和5kg由氮化硅组成的研磨介质下,将其在罐式辊上湿磨4小时。将研磨介质分离后,粉末混合物通过在约10TC下蒸发醇来干燥,随后在网孔为Irani的筛分单元中分级。所得SiC粉末批料的化学分析表明Si的比例为10摩尔%,并且碳含量为90摩尔%。随后使用石墨压制工具在30MPa的压制压力下于火花等离子体烧结装置SPS装置)中使粉末混合物致密化,并在2100°C的温度下直接通电进行烧结,得到直径85mm以及厚度8mm的圆形物。在210TC的烧结温度下,达到1.90gcm3的密度,相当于材料的理论密度的88%。对烧结圆形物进行最终切削加工,得到直径75mm以及厚度5mm的靶。[0033]在1500°C和1800°C的烧结温度下制备另外的变体C与Si粉末的混合比:9010摩尔%;文中,实现了1.77gcm3的密度理论密度的83%在150TC下或1.78gcm3的密度理论密度的83%在1800°C下)。[0034]为了分析烧结圆形物,从圆形物中切割出试样并通过扫描电子显微镜和X射线相分析在抛光部分进行分析。[0035]图1显示了在210TC下烧结的圆试样的抛光部分的微结构的扫描电子显微照片图像部分的尺寸为约115WiiX90mi,比例尺对应于20M1。在显微照片中可以看到微结构的细晶粒、均匀结构。此外,可以看到具有非常低的孔隙率和高密度的微结构。在该图中,由于抛光部分的平面垂直于压制方向,因此也垂直于微结构的定向,这样不能看到微结构的定向结构。[0036]图2显示了通过对图1中概述的样品区域的能量散射X射线光谱法EDX确定的元素分布,其中Si被显示为亮色,C被显示为暗色。从EDX分析可以看出(计数脉冲的数量显示为图3中keV的能量的函数),该圆形物基本上仅由元素Si和C组成。含Si颗粒的粒径测量值显示平均直径小于10wn,且这些颗粒的平均间距小于20wn。含Si颗粒均匀地分布在涂料源的微结构中。[0037]样品的X射线衍射图XRD显示了掺杂剂硅仅以碳化硅的形式存在,即以与碳反应的形式,这表明在烧结期间硅与碳之间发生了化学反应。因此,在微结构中存在两个不同的结晶相,S卩C相和碳化硅相。[0038]图4显示了具有比例为5摩尔%Si和95摩尔%碳含量的掺杂硅的靶变体的抛光部分的微结构的扫描电子显微照片。以与上述变体类似的方式,以适当混合比例的CSi粉末,在SPS设备中,在1500°C的烧结温度下制备靶比例尺对应于lOwn。在烧结操作期间,归因于压制工艺的定向结构在微结构中是清楚可辨的。[0039]掺杂硅的靶的这些变体用于沉积掺杂硅的碳层,特别是掺杂硅的无定形碳层。借助于首先描述的靶变体来证明所需层的沉积。将由材料CSi9010摩尔%直径75mm,厚度5mm组成并在2100°C下烧结的圆形物通过铟在其区域上焊接到直径75mm和厚度3ram的由铜组成的背板。以这种方式获得的靶用于PVD设备以通过DC溅射法涂覆由胶结硬质材料组成的基材。靶在200瓦(500V和0.4A、300瓦(550V和0.55A和400瓦(570V和0.7A的功率下显示出等离子体点火和稳定性的稳定特点。在由胶结硬质材料组成的基材上沉积的层中检测到娃和碳。[0040]工作实例2:[0041]在工作实例2中,制备了用于沉积掺杂钛的碳层的掺杂钛的涂料源。作为直径75mm以及厚度5mra的圆形靶的原料,使用约1.5kg混合比例为1090摩尔%的11粉和C粉的混合物平均粒径d50约10wn,在添加51异丙醇和5kg由氮化硅组成的研磨介质下,将其在罐式辊上湿磨4小时。各个制造步骤类似于工作实例1中的工艺步骤,使干燥的粉末混合物在30MPa的压制压力和2100°C的温度下直接通电进行烧结,且随后机械加工。对烧结试样的抛光部分进行的XRD检查显示,由于与碳反应,钛在微观结构中仅以碳化钛的形式存在。[0042]工作实例3:[0043]在工作实例3中,制备了用于掺杂有二硼化铬的碳层的物理气相沉积的靶。制造步骤类似于先前工作实例中的工艺步骤。[0044]对于直径75mm和厚度5mm的圆形靶的原料,使用约1.5kg混合比例为1090摩尔%的二硼化铬粉和C粉的混合物平均粒径d50约1Own,在添加51异丙醇和5kg由氮化硅组成的研磨介质下,将其在罐式辊上湿磨4小时。将干燥的粉末混合物在30MPa的压制压力和210CTC的温度下烧结,得到直径85ram和厚度8mm的圆形物,且随后机械加工。对烧结试样的抛光部分进行的XRD检查显示掺杂剂以不与碳反应的形式存在。

权利要求:1.一种用于制造供掺杂的碳层的物理气相沉积用的涂料源的方法,其中所述涂料源包含比例至少达75摩尔%的作为基质材料的碳和比例在丨摩尔%至25摩尔%范围内的至少一种惨杂剂,其特征在于所述方法至少包括以下制造步骤:制造由含碳粉末和含掺杂剂的粉末组成的粉末混合物在1300°C至3000°C的温度下烧结所述粉末混合物所述烧结成型体进行机械加工以得到涂料源。2.根据权利要求1所述的方法,其特征在于所述掺杂剂是金属、半金属、金属氧化物、半金属氧化物、金属氮化物、半金属氮化物、金属硼化物、半金属硼化物、金属硅化物或半金属硅化物。3.根据权利要求1或2所述的方法,其特征在于所述掺杂剂是选自由钛、钒、铬、锆、铌、钼、铪、钽、钨、硅组成的群组的元素、选自由钛、钒、铬、锆、铌、钼、铪、钽、钨组成的群组的元素的氧化物、氮化物、硼化物或硅化物或者硅的氧化物、氮化物或硼化物。4.根据以上权利要求中任一项所述的方法,其特征在于在所述烧结过程期间使所述粉末混合物在至少IMPa的压力下致密化。5.根据以上权利要求中任一项所述的方法,其特征在于所述粉末混合物通过直接通电烧结或通过热压而烧结。6.根据以上权利要求中任一项所述的方法,其特征在于所述含碳粉末和或所述含掺杂剂的粉末具有直径小于50wn的平均粒径。7.根据以上权利要求中任一项所述的方法,其特征在于所述烧结成型体在所述烧结过程后在不额外施加压力下在2000°C至300TC范围内的温度下进行热处理,从而实现石墨化。8.—种用于物理气相沉积以制造掺杂的碳层的涂料源,其由粉末组分通过烧结制得并包含比例至少达75摩尔%的作为基质材料的碳和比例在丨摩尔%至25摩尔%范围内的至少一种掺杂剂。9.根据权利要求8所述的涂料源,其特征在于所述掺杂剂是金属、半金属、金属氧化物、半金属氧化物、金属氮化物、半金属氮化物、金属硼化物、半金属硼化物、金属硅化物或半金属硅化物。10.根据权利要求8或9所述的涂料源,其特征在于所述掺杂剂是选自由钛、钒、铬、锆、铌、钼、铪、钽、钨、硅组成的群组的元素或者选自由钛、钒、铬、锆、铌、钼、铪、钽、钨组成的群组的元素的氧化物、氮化物、硼化物或硅化物或者硅的氧化物、氮化物或硼化物。11.根据权利要求8至10中任一项所述的涂料源,其特征在于含掺杂剂的颗粒均匀地分布在所述涂料源的微结构中。12.根据权利要求8至11中任一项所述的涂料源,其特征在于所述含掺杂剂的颗粒的平均间距小于50um。13.根据权利要求8至12中任一项所述的涂料源,其特征在于所述微结构具有定向结构。14.根据权利要求8至13中任一项所述的涂料源,其特征在于所述涂料源的密度大于理论密度的80%。15.—种根据权利要求8至14中任一项所述的涂料源的用途,其用于掺杂的碳层的沉积。

百度查询: 攀时复合材料有限公司 用于制造掺杂的碳层的涂料源

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。