买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】一种高效确定稠油热解产物分布的装置和方法_华南理工大学_201711281305.4 

申请/专利权人:华南理工大学

申请日:2017-12-05

公开(公告)日:2021-06-08

公开(公告)号:CN108222898B

主分类号:E21B43/16(20060101)

分类号:E21B43/16(20060101);E21B43/243(20060101)

优先权:

专利状态码:有效-授权

法律状态:2021.06.08#授权;2018.07.24#实质审查的生效;2018.06.29#公开

摘要:本发明公开了一种高效确定稠油热解产物分布的装置,包括供气系统、气相分析系统、并联地设置的六套热解装置,每套热解装置均包括通过管路依次连接的流量调节阀、气体流量计、加热反应系统、冷凝器、气液分离器、质量流量计、尾气三通阀,所述气液分离器放置在精密天平上,所述气相分析系统包括两台气相色谱仪,六套热解装置中,相邻两套热解装置的输入端共同连接同供气系统中的同一种气源,相邻三套热解装置的输出端共同连接同一台气相色谱仪。本发明还公开了一种高效确定稠油热解产物分布的方法。本发明采用六套热解装置同时模拟不同条件下注气混相驱和火烧油层的稠油热解过程,得出稠油热解过程的产物分布,方法省时高效。

主权项:1.一种高效确定稠油热解产物分布的方法,采用高效确定稠油热解产物分布的装置,所述高效确定稠油热解产物分布的装置包括供气系统8、气相分析系统、并联地设置在所述供气系统和气相分析系统之间的六套热解装置,每套热解装置均包括通过管路依次连接的流量调节阀9、气体流量计1、加热反应系统、冷凝器4、气液分离器5、质量流量计13、尾气三通阀6,所述气液分离器5放置在精密天平上11,所述气液分离器5的底部设置有液相排出口12,所述气相分析系统包括两台气相色谱仪14,六套热解装置中,相邻两套热解装置的输入端共同连接同供气系统中的同一种气源,相邻三套热解装置的输出端共同连接同一台气相色谱仪14;其特征在于,包括步骤:根据实际稠油油藏已知的含油饱和度SO,即实验中加热反应系统的含油饱和度SO,通过饱和度计算公式,计算得出实验所需的稠油体积VO和石英砂真实体积VR,混合均匀后得到油砂17并装入加热反应系统中;由供气系统8通入实验气体吹扫,排出加热反应系统中的非实验气体后,通过流量调节阀9、气体流量计1同时调节得到所需的实验气速,按设定值对加热反应系统升温;在连续升温过程中,取不同实验温度下的气体产物,气相分析系统进行在线检测分析,记录下采气温度Tn;在连续升温过程中,待温度达到目标温度后,通过精密天平11得出油品质量mi、记录取样温度Ti,通过液相排出口12排出油品后进行下一温度段油品的称量与收集;实验结束,汇总气相分析系统分析得出的不同温度下各气体含量φn,将之对温度作图,得出φn-Tn图,即为稠油热解过程中尾气成分及含量随温度的变化情况;汇总不同温度段所得液体产物的质量mi,称量实验残渣的质量ms,同时,读取质量流量计13的读数,得到气体产物总质量mg,换算成产物含量占反应前稠油的质量比α,即为稠油热解过程的产物分布。

全文数据:一种高效确定稠油热解产物分布的装置和方法技术领域[0001]本发明涉及注气混相驱和火烧油层过程中稠油热解领域,具体为一种高效确定稠油热解产物分布的装置及方法。背景技术[0002]随着全球石油消耗的迅速增长,常规石油资源日益减少,促进了对劣质石油资源的开发和利用。稠油作为劣质石油的重要组成部分,是油田中后期开采的主要对象,在能源构成中的重要性越来越显著,然而其存在采收率较低的问题。[0003]随着稠油的不断开采,采油技术朝向适于油田中后期开采的方向发展,其中比较重要的方法有SAGD,火烧油层和注气混相驱等技术。为提高SAGD的采收率,相关学者探究非烃气体辅助SAGD采油,发现优化非烃气体注入量能有效提高采收率。火烧油层,又称火驱,是通过油藏中重质组分的就地燃烧,产生的热作为热源,利用多种驱动综合作用提高采收率的热力采油法。注气混相驱则主要是向油藏中注入〇2、他或烟气等,使其溶解在原油中使原油体积膨胀,降低油水界面张力和原油粘度,改善流度比,萃取轻质烃,以达到驱油目的。上述三种稠油开采方式均为热、气和油共存的情况,开采过程中主要发生稠油热解等反应。[0004]由于稠油油层分布于地下具有大量孔隙的砂石岩中,故开采过程涉及的是稠油在岩石孔隙中与空气、COdPN2等发生热解反应的复杂过程。受地质结构复杂,热解反应情况繁多,热解过程耗时巨大等影响,人们对该过程稠油热解的研究很少,对NdPCO2等非烃气体对稠油热解的影响尚不明确,进而阻碍了稠油开采技术的快速发展。[0005]针对上述问题,本发明提供一种高效确定稠油热解产物分布的装置及方法,将油藏中复杂的热解过程搬到实验室中进行,大幅度缩短了稠油热解的时间,提高了实验效率,明确了非烃气体下稠油热解的产物分布,便于进一步研究稠油的热解过程。发明内容[0006]本发明的目的在于提供一种高效确定稠油热解产物分布的装置及方法。可明确稠油热解过程的产物分布,为进一步研究稠油的热解过程提供支持。系统采用6反应通道并联,可同时模拟不同气氛、不同气速下的注气混相驱和火烧油层的稠油热解过程,采用程序温度控制可以构建不同的温度环境,得出不同稠油热解过程的产物分布,方法操作简便、省时高效。[0007]本发明可采用下列技术方案来实现:[0008]—种高效确定稠油热解产物分布的装置,包括供气系统、气相分析系统、并联地设置在所述供气系统和气相分析系统之间的六套热解装置,每套热解装置均包括通过管路依次连接的流量调节阀、气体流量计、加热反应系统、冷凝器、气液分离器、质量流量计、尾气三通阀,所述气液分离器放置在精密天平上,所述气液分离器的底部设置有液相排出口,所述气相分析系统包括两台气相色谱仪,六套热解装置中,相邻两套热解装置的输入端共同连接同供气系统中的同一种气源,相邻三套热解装置的输出端共同连接同一台气相色谱仪。[0009]优选地,所述的供气系统包括空气气瓶、氮气气瓶、二氧化碳气瓶。[0010]优选地,每套热解装置的输出端与气相分析系统之间均设置有气体干燥器。[0011]优选地,所述的加热反应系统包括两端分别设置有气体进入口和油气排出口的反应爸、包括在所述反应爸外周壁的加热夹套,所述加热夹套包括依次包裹在反应爸外周壁的电热丝和保温层、延伸至反应釜内腔的热电偶,所述电热丝和热电偶通过电路连接温度控制柜。[0012]优选地,所述的保温层的材料为保温石英棉。[0013]优选地,所述气体流量计流量可调范围为〇〜500ml·ηήη_1。[0014]优选地,所述反应釜为水平管状,温度范围为0〜700°C。[0015]优选地,所述冷凝器冷凝介质为乙二醇。[0016]—种采用所述装置高效确定稠油热解产物分布的方法,包括步骤:[0017]根据实际稠油油藏已知的含油饱和度SQ,即实验中加热反应系统的含油饱和度So,通过饱和度计算公式,计算得出实验所需的稠油体积Vo和石英砂真实体积VR,混合均匀后得到油砂并装入加热反应系统中;[0018]由供气系统通入实验气体吹扫,排出加热反应系统中的非实验气体后,通过气体流量调节阀、气体流量计同时调节得到所需的实验气速,按设定值对加热反应系统升温;[0019]在连续升温过程中,取不同实验温度下的气体产物气相分析系统进行在线检测分析,记录下采气温度Tn;[0020]在连续升温过程中,待温度达到目标温度后,通过精密天平得出油品质量m、记录取样温度!^,通过液相排出口排除油品后进行下一温度段油品的称量与收集;[0021]实验结束,汇总气相分析系统分析得出的不同温度下各气体含量φη,将之对温度作图,得出Φη-Τη图,即为稠油热解过程中尾气成分及含量随温度的变化情况;[0022]汇总不同温度段所得液体产物的质量nu,称量实验残渣的质量ms,同时,读取质量流量计的读数,得到气体产物总质量mg,换算成产物含量占反应前稠油的质量比α,即为稠油热解过程的产物分布。[0023]优选地,所述所需的稠油体积Vo和石英砂真实体积VR,通过加热反应系统的含油饱和度So计算公式得出,所述计算公式为:[0024][0025]其中:So为油砂装入反应釜的含油饱和度,无量纲,其值为实际油藏的真实值;Vo为实验中加入的稠油体积,单位为ml;Vt为反应爸体积,单位为ml;Vr为油砂中石英砂的真实体积,单位为ml;[0026]石英砂的真实体积Vr是通过将石英砂充满加热反应系统后,称量这部分质量mR,再计算其自生的真实体积,其计算公式为:[0027][0028]其中:mR为充满反应釜石英砂的质量,单位为g;pR为石英砂的真密度,单位为g·ml_1,此处取2.65g·ml-1。[0029]对比现有技术,本发明所具有的优点和有益效果包括:[0030]1、系统可同时完成稠油的注气混相驱和稠油火驱的热解过程,系统紧凑、密封性好、操作顺畅。[0031]2、采用了六套热解装置并联构成系统,可实现不同气体、不同气速和不同驱油方式实验同时进行,过程高效省时,操作灵活。[0032]3、采用了程序控温设备,可实现稠油在室温〜700°C任意温度下的热解反应。附图说明[0033]图1示出了本发明实施例的高效确定稠油热解产物分布的装置整体结构示意图;[0034]图2示出了本发明实施例的高效确定稠油热解产物分布的装置的反应釜和加热夹套纵向剖视示意图;[0035]以上附图标记:1-气体流量计;2-反应爸;3-加热夹套;4-冷凝器;5-气液分离器;6-尾气三通阀;7-气体干燥器;8-供气系统;9-流量调节阀;10-温度控制柜;11-精密天平;12-液相排出口;13-质量流量计;14-气相色谱仪;15-热电偶;16-气体进入口;17-油砂;18-油气排出口;19-电热丝;20-保温层。具体实施方式[0036]为了对本发明的技术特征、目的和效果有更加清楚的理解,现以实施例对本发明的技术方案进行详细说明。但不能理解为对本发明的可实施范围的限定。[0037]实施例1[0038]如图1所示,一种高效确定稠油热解产物分布的装置,包括供气系统8、气相分析系统、并联地设置在所述供气系统8和气相分析系统之间的六套热解装置,所述的供气系统8包括空气气瓶、氮气气瓶、二氧化碳气瓶,用于为实验过程提供气源,所提供的气源可分为空气、NdPCO2等。每套热解装置均包括通过管路依次连接的流量调节阀9、气体流量计1、加热反应系统、冷凝器4、气液分离器5、质量流量计13、尾气三通阀6、气体干燥器7,所述气液分离器5放置在精密天平11上,所述气液分离器5的底部设置有液相排出口12,可实时排除油品。所述气相分析系统包括两台气相色谱仪14,六套热解装置中,相邻两套热解装置的输入端共同连接同供气系统中的同一种气源,相邻三套热解装置的输出端共同连接同一台气相色谱仪14,具体为:第I套热解装置和第II套热解装置的输入端共同连接空气气瓶,第III套热解装置和第IV套热解装置的输入端共同连接氮气气瓶,第V套热解装置和第VI套热解装置的输入端共同连接二氧化碳气瓶,所述第I套热解装置、第II套热解装置和第III套热解装置的输出端共同连接一台气相色谱仪14,所述第IV套热解装置、第V套热解装置和第VI套热解装置的输出端连接另一台气相色谱仪14。所述精密天平11上用于称量稠油热解出油的质量,所述质量流量计13用于计量热解过程的尾气质量;所述气体干燥器7连接在尾气三通阀6之后,用于干燥进入色谱的气体样品,所述气相色谱仪14用于分析尾气的组成与含量。[0039]如图2所示,所述的加热反应系统包括两端分别设置有气体进入口16和油气排出口18的反应釜2、包括在所述反应釜2外周壁的加热夹套3,所述加热夹套3包括依次包裹在反应釜2外周壁的电热丝19和保温层20、延伸至反应釜2内腔的热电偶15,所述电热丝19和热电偶15通过电路连接温度控制柜10,所述的保温层20的材料为保温石英棉。所述反应釜2整个系统的主体部分,用于稠油热解过程中稠油的燃烧、氧化裂化等反应提供场所,所述加热夹套3中的电热丝19用于为反应釜2提供稠油热解所需热量,所述温度控制柜10通过温度反馈控制实验过程所需温度,保温石英棉包裹在反应釜2表面用于保温。[0040]所述气体流量计1的流量可调范围为0〜500ml·min_1,用于调节实验过程中的气体流量。[0041]所述反应爸2为水平管状,尺寸内径X水平长度为46X400mm、总体积为665ml,温度范围为0〜700°C。[0042]所述反应釜2内的油砂17可按Sci=WVt-VrX100%=23.1%计算出油和砂的量进行配比。[0043]所述冷凝器4冷凝介质为-30°C的乙二醇,所述气液分离器5用于分离气与液,有效容积为200ml。[0044]所述气相色谱仪14可得出尾气成分和含量,汇总实验过程的尾气变化数据,得出Φn_Tn图。[0045]本实施例中,所述精密天平11可测出不同温度段油品的质量nu,汇总实验过程的所有油品质量mi、残渣质量ms及尾气总质量mg,换算成产物含量占反应前稠油质量比α,所得热解过程产物分布以表格形式体现。[0046]本实施例采用六套热解装置并联,可同时模拟不同气氛、不同气速下的注气混相驱和火烧油层的稠油热解过程,得出稠油热解过程的产物分布。[0047]实施例2[0048]—种采用所述装置高效确定稠油热解产物分布的方法,本实施例的反应釜2体积为665ml内径D=46mm,水平长度=400mm,包括步骤:[0049]本实施例以CO2气氛下稠油的热解为例,实验气速选取30ml·mirT1,油样取至辽河油田Q区块,砂样选取4-8mm粒度的石英砂,含油饱和度So取Q块稠油的真实值,为23.1%。代入So,Vr计算公式可得[0050]量取71.581111,合688密度为0.958.1111_10块脱水稠油,石英砂94^合354.721111密度为2.65g·πιΓ1;将混合均匀的油砂填满反应釜,以30ml·HiirT1的气速通入C02,30min后设置持续升温从26°C到650°C;随着实验的进行,在150〜650°C取多个温度点进行尾气分析,记录取气温度;在350、450、550和650°C分别保温40min,保温结束,称量出油品质量nu。实验到650°C保温40min结束,待装置冷却后称取所剩残渣的质量ms,读取尾气总质量mg;最后,汇总过程油品、残渣及尾气质量,换算成产物含量占反应前稠油质量比α,所得热解过程产物分布如下表所示。热解过程的产生的尾气主要包括H2、C0、CH4和CO2。[0052]实施例3[0053]—种采用所述装置高效确定稠油热解产物分布的方法,本实施例的反应釜2体积为665ml内径D=46mm,水平长度=400mm,包括步骤:[0054]本实施例以CO2气氛下稠油的热解为例,实验气速选取120ml•mirT1,油样取至辽河油田Q区块,砂样选取4-8mm粒度的石英砂,含油饱和度S。取Q块稠油的真实值,为23.1%。计算方法同实施例2。[0055]称取68gQ块脱水稠油,石英砂939g;将混合均匀的油砂填满反应釜,以120ml·min_1的气速通入⑶2,30min后设置持续升温从25°C到650°C,随着实验的进行,在150〜650°C取多个温度点进行尾气分析,记录取气温度;在350、450、550和650°C分别保温40min,保温结束,称量出油品质量πη。实验到650°C保温40min结束,待装置冷却后称取所剩残渣的质量1,读取尾气总质量mg;最后,汇总过程油品、残渣及尾气质量,换算成产物含量占反应前稠油质量比热解过程产物分布如下表所示。热解过程的产生的尾气主要包括H2、C0、CH4和CO2o[0057]实施例4[0058]—种采用所述装置高效确定稠油热解产物分布的方法,本实施例的反应釜2体积为665ml内径D=46mm,水平长度=400mm,包括步骤:[0059]本实施例以犯气氛下稠油的热解为例,实验气速选取30ml•mirT1,油样取至辽河油田Q区块,砂样选取4-8mm粒度的石英砂,含油饱和度So取Q块稠油的真实值,为23.1%。计算方法同实施例2。[0060]称取68gQ块脱水稠油,石英砂941g;将混合均匀的油砂填满反应釜,以30ml·min_1的气速通入N2,30min后设置持续升温从25°C到650°C,随着实验的进行,在150〜650°C取多个温度点进行尾气分析,记录取气温度;在350、450、550和650°C分别保温40min,保温结束,称量出油品质量m。实验到650°C保温40min结束,待装置冷却后称取所剩残渣的质量ms,读取尾气总质量mg;最后,汇总过程油品、残渣及尾气质量,换算成产物含量占反应前稠油质量比α,热解过程产物分布如下表所示。热解过程的产生的尾气主要包括H2、N2、CH4和CO2o[0062]实施例5[0063]—种采用所述装置高效确定稠油热解产物分布的方法,本实施例的反应釜2体积为665ml内径D=46mm,水平长度=400mm,包括步骤:[0064]本实施例以犯气氛下稠油的热解为例,实验气速选取120ml·HiirT1,油样取至辽河油田Q区块,砂样选取4-8mm粒度的石英砂,含油饱和度So取Q块稠油的真实值,为23.1%。计算方法同实施例2。[0065]称取68gQ块脱水稠油,石英砂939g;将混合均匀的油砂填满反应釜,以120ml·min_1的气速通入N2,30min后设置持续升温从25°C到650°C,随着实验的进行,在150〜650°C取多个温度点进行尾气分析,记录取气温度;在350、450、550和650°C分别保温40min,保温结束,称量出油品质量m。实验到650°C保温40min结束,待装置冷却后称取所剩残渣的质量ms,读取尾气总质量mg;最后,汇总过程油品、残渣及尾气质量,换算成产物含量占反应前稠油质量比α,热解过程产物分布如下表所示。热解过程的产生的尾气主要包括H2、N2、CH4和CO2o[0067]实施例6[0068]—种采用所述装置高效确定稠油热解产物分布的方法,本实施例的反应釜2体积为665ml内径D=46mm,水平长度=400mm,包括步骤:[0069]本实施例以空气下稠油的热解为例,实验气速选取30ml·mirT1,油样取至辽河油田Q区块,砂样选取4-8_粒度的石英砂,含油饱和度Sq取Q块稠油的真实值,为23.1%。计算方法同实施例3。[0070]称取68gQ块脱水稠油,石英砂941g;将混合均匀的油砂填满反应釜,以30ml·min_1的气速通入空气,30min后设置持续升温从25°C到650°C,随着实验的进行,在150〜650°C取多个温度点进行尾气分析,记录取气温度;在350、450、550和650°C分别保温40min,保温结束,称量出油品质量πη。实验到650°C保温40min结束,待装置冷却后称取所剩残渣的质量叫,读取尾气总质量mg;最后,汇总过程油品、残渣及尾气质量,换算成产物含量占反应前稠油质量比热解过程产物分布如下表所示。热解过程的产生的尾气主要包括H2、N2、〇2、CH4和C〇2〇[0072]实施例7[0073]—种采用所述装置高效确定稠油热解产物分布的方法,本实施例的反应釜2体积为665ml内径D=46mm,水平长度=400mm,包括步骤:[0074]本实施例以空气下稠油的热解为例,实验气速选取120ml·mirT1,油样取至辽河油田Q区块,砂样选取4-8_粒度的石英砂,含油饱和度So取Q块稠油的真实值,为23.1%。计算方法同实施例3。[0075]称取68gQ块脱水稠油,石英砂939g;将混合均匀的油砂填满反应釜,以120ml·min_1的气速通入空气,30min后设置持续升温从25°C到650°C,随着实验的进行,在150〜650°C取多个温度点进行尾气分析,记录取气温度;在350、450、550和650°C分别保温40min,保温结束,称量出油品质量πη。实验到650°C保温40min结束,待装置冷却后称取所剩残渣的质量1,读取尾气总质量mg;最后,汇总过程油品、残渣及尾气质量,换算成产物含量占反应前稠油质量比热解过程产物分布如下表所示。热解过程的产生的尾气主要包括H2、N2、〇2、014和。〇2〇[0077]本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

权利要求:1.一种高效确定稠油热解产物分布的装置,其特征在于:包括供气系统8、气相分析系统、并联地设置在所述供气系统和气相分析系统之间的六套热解装置,每套热解装置均包括通过管路依次连接的流量调节阀9、气体流量计(1、加热反应系统、冷凝器⑷、气液分离器5、质量流量计(13、尾气三通阀(6,所述气液分离器⑸放置在精密天平上(11,所述气液分离器5的底部设置有液相排出口(12,所述气相分析系统包括两台气相色谱仪(14,六套热解装置中,相邻两套热解装置的输入端共同连接同供气系统中的同一种气源,相邻三套热解装置的输出端共同连接同一台气相色谱仪14。2.根据权利要求1所述的高效确定稠油热解产物分布的装置,其特征在于:所述的供气系统包括空气气瓶、氮气气瓶、二氧化碳气瓶。3.根据权利要求1所述的高效确定稠油热解产物分布的装置,其特征在于:每套热解装置的输出端与气相分析系统之间均设置有气体干燥器7。4.根据权利要求1所述的高效确定稠油热解产物分布的装置,其特征在于:所述的加热反应系统包括两端分别设置有气体进入口(16和油气排出口(18的反应釜2、包括在所述反应釜⑵外周壁的加热夹套3,所述加热夹套⑶包括依次包裹在反应釜2外周壁的电热丝(19和保温层20、延伸至反应釜2内腔的热电偶(15,所述电热丝(19和热电偶15通过电路连接温度控制柜10。5.根据权利要求4所述的高效确定稠油热解产物分布的装置,其特征在于:所述的保温层20的材料为保温石英棉。6.根据权利要求4所述的高效确定稠油热解产物分布的装置,其特征在于:所述反应釜2为水平管状,温度范围为0〜700°C。7.根据权利要求1所述的高效确定稠油热解产物分布的装置,其特征在于:所述气体流量计⑴流量可调范围为0〜500ml·ηήη_1。8.根据权利要求1所述的高效确定稠油热解产物分布的装置,其特征在于:所述冷凝器⑷冷凝介质为乙二醇。9.一种采用如权利要求书1至8种任一项所述装置高效确定稠油热解产物分布的方法,其特征在于,包括步骤:根据实际稠油油藏已知的含油饱和度So,即实验中加热反应系统的含油饱和度S。,通过饱和度计算公式,计算得出实验所需的稠油体积V。和石英砂真实体积VR,混合均匀后得到油砂17并装入加热反应系统中;由供气系统8通入实验气体吹扫,排出加热反应系统中的非实验气体后,通过气体流量调节阀(9、气体流量计(1同时调节得到所需的实验气速,按设定值对加热反应系统升温;在连续升温过程中,取不同实验温度下的气体产物气相分析系统进行在线检测分析,记录下采气温度Tn;在连续升温过程中,待温度达到目标温度后,通过精密天平(11得出油品质量nu、记录取样温度!^,通过液相排出口(12排除油品后进行下一温度段油品的称量与收集;实验结束,汇总气相分析系统分析得出的不同温度下各气体含量Φη,将之对温度作图,得出Φη-Τη图,即为稠油热解过程中尾气成分及含量随温度的变化情况;汇总不同温度段所得液体产物的质量Hli,称量实验残渣的质量Hls,同时,读取质量流量计(13的读数,得到气体产物总质量~,换算成产物含量占反应前稠油的质量比α,即为稠油热解过程的产物分布。10.根据权利要求书9所述的方法,其特征在于:所述所需的稠油体积Vo和石英砂真实体积VR,通过加热反应系统的含油饱和度So计算公式得出,所述计算公式为:其中:So为油砂(17装入反应釜2的含油饱和度,无量纲,其值为实际油藏的真实值;Vo为实验中加入的稠油体积,单位为ml;Vt为反应爸2体积,单位为ml;Vr为油砂(17中石英砂的真实体积,单位为ml;石英砂的真实体积Vr是通过将石英砂充满加热反应系统后,称量这部分质量η®,再计算其自生的真实体积,其计算公式为:其中:mR为充满反应釜(2石英砂的质量,单位为g;Pr为石英砂的真密度,单位为g·ml,此处取

百度查询: 华南理工大学 一种高效确定稠油热解产物分布的装置和方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。