买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】变电站电气设备温度预测方法_陕西科技大学_201910422085.5 

申请/专利权人:陕西科技大学

申请日:2019-05-21

公开(公告)日:2022-11-25

公开(公告)号:CN110175386B

主分类号:G06F30/27

分类号:G06F30/27;G06N3/04;G06N3/08;G06Q50/06

优先权:

专利状态码:有效-授权

法律状态:2022.11.25#授权;2019.09.20#实质审查的生效;2019.08.27#公开

摘要:本发明涉及一种变电站电气设备温度预测方法,将采集到的电气设备运行参数及环境参数作为输入变量,再利用深度信念网络(DeepBeliefNetwork,DBN)建立预测模型对电气设备温度进行预测。本发明首先采用受限玻尔兹曼机(RestrictedBoltzmannMachine,RBM)堆叠的深度信念网络对输入电气设备参数数据进行深层特征提取完成无监督学习过程;然后将DBN最后一层输出的高维特征量作为神经网络的输入,进行常规拟合获得预测结果;最后,将训练好的DBN‑NN模型用于变电站内电气设备温度预测中;通过提出的温度预测方法,可较准确的预测电气设备温度,从而为解决预测估计问题、减少变电站电气设备故障提供了一种新的方法。

主权项:1.变电站电气设备温度预测方法,其特征在于:将采集到的电气设备运行参数及环境参数作为输入变量,再利用深度信念网络建立预测模型对电气设备温度进行预测;具体包括以下步骤:第1步:数据预处理:对原始数据集进行预处理,选取训练样本集和待预测的样本集;第2步:建立电气设备温度预测模型:底层采用多个RBM堆叠而成的DBN模型,顶层采用神经网络进行最后的温度拟合预测;具体为:用于电气设备温度预测的DBN结构由一个输入层、多个隐含层和一个输出层构成;为了使预测模型最优,采用枚举法逐层对隐含层节点数进行选取,确定隐含层层数和节点数,实现对输入数据的特征提取;受限玻尔兹曼机模型是一个热力学的能量模型;假设有一组变量v,h,那么RBM模型定义的联合概率分布为: 其中:是归一化常量,Ev,h;θ是模型所对应的能量函数,公式如下: 其中:θ={w,a,b}是模型参数,wij表示可见层节点i与隐含层节点j之间的连接权重,ai和bj分别表示可见层节点i与隐含层节点j的偏置;由于输入变量为电气设备本身属性、外界环境数据等连续型数据,因此DBN模型的第一层采用可见单元和隐含单元分别为线性随机单元和二进制随机单元的高斯-伯努利RBM;通过高斯-伯努利RBM能够将输入数据转换为二进值变量,之后的各层再采用伯努利-伯努利RBM来进行处理;高斯-伯努利RBM的能量函数被定义为: 式中:σi为可见单元vi的高斯噪声的标准差;当DBN完成特征提取后,最后一层的输出作为神经网络的输入,神经网络作为网络的回归层,通过线性激活函数处理得到设备温度预测值;第3步:训练模型,获得参数的最优值:确定输入变量后,利用训练样本集进行DBN-NN模型训练;具体为:RBM模型在学习过程中采用对比散度算法,通过学习降低整体模型的能量,求解对数似然函数的负梯度来获得参数θ的最优值;步骤一:开始进行第一层RBM训练,将划分好的训练数据作为可见单元的状态v,隐含单元hj的二进制状态被设置为1的概率通过下式计算得到: 式中:σx为sigmoid激活函数,其表达式为σx=1+e-x-1;步骤二:当隐含层各单元的状态h确定时,可见单元更新重建后的状态v′=vi′通过下式计算得到: 式中:vi取实值,服从均值为方差为1的高斯分布;步骤三:根据式4重新计算得到隐含单元更新重建后的h′=hj′,其参数更新公式表示为: 式中:εCD为对比散度梯度下降算法的学习率;·表示变量的数学期望;步骤四:对于包含K个样本的第k个数据集的权值和偏置更新公式通过下式计算得到: 步骤五:判断迭代是否达到最大迭代次数emax,通常取值为50~200次;未达到最大迭代次数,则跳转至步骤一,执行步骤一至步骤四,重复执行直至达到最大迭代次数;第一层RBM训练完成,得到其参数{w1,a1,b1}并固定;步骤六:将RBM1的隐含单元的激活概率作为RBM2的输入向量,进行第二层RBM训练,第二层采用BB-RBM模型;重复执行步骤一至步骤四,步骤二的可见单元更新重建后的状态v′=vi′通过下式计算得到: 直至达到迭代次数,得到其参数{w2,a2,b2}并固定;步骤七:以后各层均以BB-RBM模型进行训练,直到最顶层训练结束,由此得到DBN网络的权重W和偏置B的初始参数;步骤八:当DBN模型中的所有RBM训练完之后,训练进入到最上层的有监督学习方法中的神经网络,顶层神经网络将底层DBN模型提取的高级抽象特征作为输入,继续进行网络的训练,神经网络对已训练模型进行了一个参数微调,得到最优解;第4步:预测输出:将待预测时刻输入数据集合输入到训练好的温度预测模型中,得到各个时刻的设备温度预测值。

全文数据:变电站电气设备温度预测方法技术领域本发明涉及电气设备温度预测技术领域,具体涉及一种变电站电气设备温度预测方法。背景技术变电站是供电系统的枢纽,是电网系统中实现电能分配、电压转换的重要组成部分,它的安全直接关系到整个电网的安全。变电环节是电网中灾害事故高发的环节,其事故多以设备火灾为主。温度能够很好的反映电气设备的运行状态,对电气设备运行状态的提前预判能够为变电站的安全稳定运行提供保障。因此选取设备温度作为监测参数,结合多种参数对设备温度进行联合预测,在危险发生之前介入处理,将极大的减少事故的发生。在变电站复杂的环境下,数据收集受各种因素的影响,时序数据会产生各种不同类型的噪声。这使得收集到的时序数据具有很大的非线性、非稳定性特点,对其精度预测存在巨大挑战。基于传统浅层学习网络预测方法很难处理在变电站这种复杂环境下输入和输出之间的关系,深度学习模型可以包含更多的隐含层,优化了误差反馈算法,使得模型可以在大数据集中学习更加复杂的逻辑关系、识别数据结构和分布。发明内容本发明的目的是提供一种变电站电气设备温度预测方法,采用基于受限玻尔兹曼机的深度信念网络模型,对变电站内运行的电气设备进行温度的预测,为变电站安全稳定运行提供了新的保障。本发明所采用的技术方案为:变电站电气设备温度预测方法,其特征在于:将采集到的电气设备运行参数及环境参数作为输入变量,再利用深度信念网络建立预测模型对电气设备温度进行预测。具体包括以下步骤:第1步:数据预处理:对原始数据集进行预处理,选取训练样本集和待预测的样本集;第2步:建立电气设备温度预测模型:底层采用多个RBM堆叠而成的DBN模型,顶层采用神经网络进行最后的温度拟合预测;第3步:训练模型,获得参数θ的最优值:确定输入变量后,利用训练样本集进行DBN-NN模型训练;第4步:预测输出:将待预测时刻输入数据集合输入到训练好的温度预测模型中,得到各个时刻的设备温度预测值。第1步具体为:对于变电站内运行设备的温度预测,采用逐点方式进行预测,数据采集时间间隔可以是30min,1h或2h;输入数据包括设备参数和外界参数,从而形成设备温度预测模型的输入向量x=[x1,x2,L,xN],模型的输出y$为预测点设备温度预测值;输入向量x与相应实际温度值y构成一个训练样本{x,y};实际电气设备温度预测过程中,训练样本按照时间序列排序,将训练样本划分为若干组小批量的数据集,依次进行训练。第2步具体为:用于电气设备温度预测的DBN结构由一个输入层、多个隐含层和一个输出层构成;为了使预测模型最优,采用枚举法逐层对隐含层节点数进行选取,确定隐含层层数和节点数,实现对输入数据的特征提取;受限玻尔兹曼机模型是一个热力学的能量模型;假设有一组变量v,h,那么RBM模型定义的联合概率分布为:其中:是归一化常量,Ev,h;θ是模型所对应的能量函数,公式如下:其中:θ={w,a,b}是模型参数,wij表示可见层节点i与隐含层节点j之间的连接权重,ai和bj分别表示可见层节点i与隐含层节点j的偏置;由于输入变量为电气设备本身属性、外界环境数据等连续型数据,因此DBN模型的第一层采用可见单元和隐含单元分别为线性随机单元和二进制随机单元的高斯-伯努利RBM;通过高斯-伯努利RBM能够将输入数据转换为二进值变量,之后的各层再采用伯努利-伯努利RBM来进行处理;高斯-伯努利RBM的能量函数被定义为:式中:σi为可见单元vi的高斯噪声的标准差;当DBN完成特征提取后,最后一层的输出作为神经网络的输入,神经网络作为网络的回归层,通过线性激活函数处理得到设备温度预测值。第3步具体为:RBM模型在学习过程中采用对比散度算法,通过学习降低整体模型的能量,求解对数似然函数的负梯度来获得参数θ的最优值;步骤一:开始进行第一层RBM训练,将划分好的训练数据作为可见单元的状态v,隐含单元hj的二进制状态被设置为1的概率通过下式计算得到:式中:σx为sigmoid激活函数,其表达式为σx=1+e-x-1;步骤二:当隐含层各单元的状态h确定时,可见单元更新重建后的状态v′=vi′通过下式计算得到:式中:vi取实值,服从均值为方差为1的高斯分布;步骤三:根据式4重新计算得到隐含单元更新重建后的h′=hj′,其参数更新公式表示为:式中:εCD为对比散度梯度下降算法的学习率;表示变量的数学期望;步骤四:对于包含K个样本的第k个数据集的权值和偏置更新公式通过下式计算得到:步骤五:判断迭代是否达到最大迭代次数emax,通常取值为50~200次;未达到最大迭代次数,则跳转至步骤一,执行步骤一至步骤四,重复执行直至达到最大迭代次数;第一层RBM训练完成,得到其参数{w1,a1,b1}并固定;步骤六:将RBM1的隐含单元的激活概率作为RBM2的输入向量,进行第二层RBM训练,第二层采用BB-RBM模型;重复执行步骤一至步骤四,步骤二的可见单元更新重建后的状态v′=vi′通过下式计算得到:直至达到迭代次数,得到其参数{w2,a2,b2}并固定;步骤七:以后各层均以BB-RBM模型进行训练,直到最顶层训练结束,由此得到DBN网络的权重W和偏置B的初始参数;步骤八:当DBN模型中的所有RBM训练完之后,训练进入到最上层的有监督学习方法中的神经网络,顶层神经网络将底层DBN模型提取的高级抽象特征作为输入,继续进行网络的训练,神经网络对已训练模型进行了一个参数微调,得到最优解。本发明具有以下优点:基于传统浅层学习网络预测方法很难处理在变电站这种复杂环境下输入和输出之间的关系,本发明采用深度信念网络完成变电站电气设备温度预测,将采集到的电气设备运行参数及环境参数等多个参数作为输入变量,再利用深度信念网络建立预测模型对电气设备温度进行预测。通过该方法对大量数据进行快速分析,融合深度学习和特征学习,逐层无监督学习弱化和目标函数相关性小的输入特征,从而大大提高了建模能力和预测精度。为电网的安全稳定运行提供保障。该方法具有一定的普适性,可广泛的应用于各种电气设备温度预测和科学研究中。附图说明图1为本发明的预测模型结构图;图2为本发明的模型训练流程图;图3为本发明的预测流程图;图4为本发明实施案例的预测结果;图5为本发明实施案例的预测误差。具体实施方式下面结合具体实施方式对本发明进行详细的说明。本发明涉及一种变电站电气设备温度预测方法,将采集到的电气设备运行参数及环境参数作为输入变量,再利用深度信念网络建立预测模型对电气设备温度进行预测。首先采用受限玻尔兹曼机堆叠的深度信念网络对输入电气设备参数数据进行深层特征提取完成无监督学习过程;然后将DBN最后一层输出的高维特征量作为神经网络的输入,进行常规拟合获得预测结果;最后,将训练好的DBN-NN模型用于变电站内电气设备温度预测中。具体包括以下步骤:第1步:数据预处理:对原始数据集进行预处理,选取训练样本集和待预测的样本集;第2步:建立电气设备温度预测模型:底层采用多个RBM堆叠而成的DBN模型,顶层采用神经网络进行最后的温度拟合预测;第3步:训练模型,获得参数θ的最优值:确定输入变量后,利用训练样本集进行DBN-NN模型训练;第4步:预测输出:将待预测时刻输入数据集合输入到训练好的温度预测模型中,得到各个时刻的设备温度预测值。第1步具体为:对于变电站内运行设备的温度预测,采用逐点方式进行预测,数据采集时间间隔可以是30min,1h或2h。输入数据包括设备参数如负荷电流、有功功率等和外界参数如油温温度,风速等影响电气设备温度的多种因素,从而形成设备温度预测模型的输入向量x=[x1,x2,L,xN],模型的输出y$为预测点设备温度预测值。输入向量x与相应实际温度值y构成一个训练样本{x,y}。实际电气设备温度预测过程中,训练样本按照时间序列排序,将训练样本划分为若干组小批量的数据集,依次进行训练。本发明所提出的电气设备温度预测模型如图1所示。第2步具体为:本发明所提出用于电气设备温度预测的DBN结构由一个输入层、多个隐含层和一个输出层构成。为了使预测模型最优,采用枚举法逐层对隐含层节点数进行选取,确定隐含层层数和节点数,实现对输入数据的特征提取。受限玻尔兹曼机模型是一个热力学的能量模型。假设有一组变量v,h,那么RBM模型定义的联合概率分布为:其中:是归一化常量。Ev,h;θ是模型所对应的能量函数,公式如下:其中:θ={w,a,b}是模型参数,wij表示可见层节点i与隐含层节点j之间的连接权重,ai和bj分别表示可见层节点i与隐含层节点j的偏置。由于输入变量为电气设备本身属性、外界环境数据等连续型数据,因此本发明DBN模型的第一层采用可见单元和隐含单元分别为线性随机单元和二进制随机单元的高斯-伯努利RBMGaussian-BernoulliRBM,GB-RBM。通过GB-RBM能够将输入数据转换为二进值变量,之后的各层再采用伯努利-伯努利RBMBernoulli-BernoulliRBM,BB-RBM来进行处理。GB-RBM的能量函数被定义为:式中:σi为可见单元vi的高斯噪声的标准差。当DBN完成特征提取后,最后一层的输出作为神经网络的输入,神经网络作为网络的回归层,通过线性激活函数处理得到设备温度预测值。第3步具体为:RBM模型在学习过程中采用对比散度ContrastiveDivergence,CD算法,通过学习降低整体模型的能量,求解对数似然函数的负梯度来获得参数θ的最优值。步骤一:开始进行第一层RBM训练,将划分好的训练数据作为可见单元的状态v,隐含单元hj的二进制状态被设置为1的概率可以通过下式计算得到:式中:σx为sigmoid激活函数,其表达式为σx=1+e-x-1;步骤二:当隐含层各单元的状态h确定时,可见单元更新重建后的状态v′=vi′可以通过下式计算得到:式中:vi取实值,服从均值为方差为1的高斯分布;步骤三:根据式4重新计算得到隐含单元更新重建后的h′=hj′。其参数更新公式可以表示为:式中:εCD为对比散度梯度下降算法的学习率;表示变量的数学期望;步骤四:对于包含K个样本的第k个数据集的权值和偏置更新公式可以通过下式计算得到:步骤五:判断迭代是否达到最大迭代次数emax,通常取值为50~200次。未达到最大迭代次数,则跳转至步骤一,执行步骤一至步骤四,重复执行直至达到最大迭代次数。第一层RBM训练完成,得到其参数{w1,a1,b1}并固定;步骤六:将RBM1的隐含单元的激活概率作为RBM2的输入向量,进行第二层RBM训练,第二层采用BB-RBM模型。重复执行步骤一至步骤四,步骤二的可见单元更新重建后的状态v′=vi′通过下式计算得到:直至达到迭代次数,得到其参数{w2,a2,b2}并固定;步骤七:以后各层均以BB-RBM模型进行训练,直到最顶层训练结束,由此可以得到DBN网络的权重W和偏置B的初始参数;步骤八:当DBN模型中的所有RBM训练完之后,训练进入到最上层的有监督学习方法中的神经网络,顶层神经网络将底层DBN模型提取的高级抽象特征作为输入,继续进行网络的训练,神经网络对已训练模型进行了一个参数微调,得到最优解。具体训练流程图如图2所示。实施案例:第1步:数据预处理。实验数据来自于陕西省某变电站内330KV主变压器2018年3月至6月的历史数据,数据采集时间间隔为2h。根据所研究对象的特性,将负荷电流、有功功率、无功功率、电网频率、环境温度和顶层油温六个影响变压器绕组温度的变量作为输入,来预测绕组温度。选前1404组为训练集,后36组为测试集,即选取后36组数据用来测试。将1404组训练集划分为39块小批量的数据集,每块小批量数据集36组。第2步:建立电气设备温度预测模型。为了使预测模型最优,采用枚举法逐层对隐含层节点数进行选取。表1DBN-BP模型不同结构时预测性能设置RBM个数依次为1,2,3个,隐含节点数依次设置为5~30个间隔为5个,性能指标MSE,MAPE的值为重复20次实验的平均值。结果如表1所示,我们能够看出,RBM个数为1隐含节点数为15时,MSE,MAPE取得最小值0.0688和0.00411;RBM个数为2隐含节点数为20时,MSE,MAPE取得最小值0.0183和0.00204。之后增加层数时,其性能已没有仅包含两层时的性能好。由此,对于该数据集,模型选取两层RBM,RBM1隐含节点数为15,RBM2隐含节点数为20,具有较佳的效果。第3步:模型训练。将负荷电流、有功功率、无功功率、电网频率、环境温度和顶层油温六个影响变压器绕组温度的变量作为输入,绕组温度作为输出,依次进行训练。步骤一:开始进行第一层RBM训练,将划分好的训练数据作为可见单元的状态v,隐含单元hj的二进制状态被设置为1的概率通过式4计算得到;步骤二:当隐含层各单元的状态h确定时,可见单元更新重建后的状态v′=vi′通过式5计算得到;步骤三:根据式4重新计算得到隐含单元更新重建后的h′=hj′。步骤四:对于包含39个样本的第k个数据集的权值和偏置更新公式通过式7计算得到;步骤五:判断迭代是否达到最大迭代次数emax,通常取值为50~200次。未达到最大迭代次数,则跳转至步骤一,执行步骤一至步骤四,重复执行直至达到最大迭代次数。第一层RBM训练完成,得到其参数{w1,a1,b1}并固定;步骤六:将RBM1的隐含单元的激活概率作为RBM2的输入向量,进行第二层RBM训练,第二层采用BB-RBM模型。重复执行步骤一至步骤四,步骤二的可见单元更新重建后的状态v′=vi′通过式8计算得到。达到迭代次数,得到其参数{w2,a2,b2}并固定;步骤七:DBN模型中的RBM训练完之后得到DBN网络的权重W和偏置B的初始参数;步骤八:训练进入到最上层的有监督学习方法中的神经网络,顶层神经网络将底层DBN模型提取的高级抽象特征作为输入,继续进行网络的训练,神经网络对已训练模型进行了一个参数微调,得到最优解。第4步:预测输出。为了充分验证本发明的有效性和准确性,对72h的变压器绕组温度进行预测。分别与BP和SVM方法进行比较。表2为3种方法预测性能的比较,为保证客观性,实验结果均为进行20次的平均值。表2不同方法预测误差比较从表2中能够看出,本发明比其他2种方法预测误差都小。从图3和图4可以看出三种预测方法预测值与真实值之间的拟合程度,本发明较其他两种传统浅层网络预测精度更高,误差范围更小。通过对比可以看出相同条件下,传统BP神经网络预测误差在[-2,1]之间波动,支持向量机预测误差在[-1,4]之间波动,而本发明预测误差在[-0.1,0.4]之间波动,预测误差明显小于其他两种方法。能够更加准确的预测变压器绕组温度。本发明在后续训练过程中将训练样本划分成了小批量,然后一小批一小批的输入进行训练,这样既解决了样本数据量巨大,计算效率不太高的问题,又具有实际的物理意义;另外,本发明逐层对隐含层节点数进行选取,得到了最优的层数和节点数。本发明的内容不限于实施例所列举,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

权利要求:1.变电站电气设备温度预测方法,其特征在于:将采集到的电气设备运行参数及环境参数作为输入变量,再利用深度信念网络建立预测模型对电气设备温度进行预测。2.根据权利要求1所述的变电站电气设备温度预测方法,其特征在于:具体包括以下步骤:第1步:数据预处理:对原始数据集进行预处理,选取训练样本集和待预测的样本集;第2步:建立电气设备温度预测模型:底层采用多个RBM堆叠而成的DBN模型,顶层采用神经网络进行最后的温度拟合预测;第3步:训练模型,获得参数θ的最优值:确定输入变量后,利用训练样本集进行DBN-NN模型训练;第4步:预测输出:将待预测时刻输入数据集合输入到训练好的温度预测模型中,得到各个时刻的设备温度预测值。3.根据权利要求2所述的变电站电气设备温度预测方法,其特征在于:第1步具体为:对于变电站内运行设备的温度预测,采用逐点方式进行预测,数据采集时间间隔可以是30min,1h或2h;输入数据包括设备参数和外界参数,从而形成设备温度预测模型的输入向量x=[x1,x2,L,xN],模型的输出为预测点设备温度预测值;输入向量x与相应实际温度值y构成一个训练样本{x,y};实际电气设备温度预测过程中,训练样本按照时间序列排序,将训练样本划分为若干组小批量的数据集,依次进行训练。4.根据权利要求3所述的变电站电气设备温度预测方法,其特征在于:第2步具体为:用于电气设备温度预测的DBN结构由一个输入层、多个隐含层和一个输出层构成;为了使预测模型最优,采用枚举法逐层对隐含层节点数进行选取,确定隐含层层数和节点数,实现对输入数据的特征提取;受限玻尔兹曼机模型是一个热力学的能量模型;假设有一组变量v,h,那么RBM模型定义的联合概率分布为:其中:是归一化常量,Ev,h;θ是模型所对应的能量函数,公式如下:其中:θ={w,a,b}是模型参数,wij表示可见层节点i与隐含层节点j之间的连接权重,ai和bj分别表示可见层节点i与隐含层节点j的偏置;由于输入变量为电气设备本身属性、外界环境数据等连续型数据,因此DBN模型的第一层采用可见单元和隐含单元分别为线性随机单元和二进制随机单元的高斯-伯努利RBM;通过高斯-伯努利RBM能够将输入数据转换为二进值变量,之后的各层再采用伯努利-伯努利RBM来进行处理;高斯-伯努利RBM的能量函数被定义为:式中:σi为可见单元vi的高斯噪声的标准差;当DBN完成特征提取后,最后一层的输出作为神经网络的输入,神经网络作为网络的回归层,通过线性激活函数处理得到设备温度预测值。5.根据权利要求4所述的变电站电气设备温度预测方法,其特征在于:第3步具体为:RBM模型在学习过程中采用对比散度算法,通过学习降低整体模型的能量,求解对数似然函数的负梯度来获得参数θ的最优值;步骤一:开始进行第一层RBM训练,将划分好的训练数据作为可见单元的状态v,隐含单元hj的二进制状态被设置为1的概率通过下式计算得到:式中:σx为sigmoid激活函数,其表达式为σx=1+e-x-1;步骤二:当隐含层各单元的状态h确定时,可见单元更新重建后的状态v′=vi′通过下式计算得到:式中:vi取实值,服从均值为方差为1的高斯分布;步骤三:根据式4重新计算得到隐含单元更新重建后的h′=hj′,其参数更新公式表示为:式中:εCD为对比散度梯度下降算法的学习率;表示变量的数学期望;步骤四:对于包含K个样本的第k个数据集的权值和偏置更新公式通过下式计算得到:步骤五:判断迭代是否达到最大迭代次数emax,通常取值为50~200次;未达到最大迭代次数,则跳转至步骤一,执行步骤一至步骤四,重复执行直至达到最大迭代次数;第一层RBM训练完成,得到其参数{w1,a1,b1}并固定;步骤六:将RBM1的隐含单元的激活概率作为RBM2的输入向量,进行第二层RBM训练,第二层采用BB-RBM模型;重复执行步骤一至步骤四,步骤二的可见单元更新重建后的状态v′=vi′通过下式计算得到:直至达到迭代次数,得到其参数{w2,a2,b2}并固定;步骤七:以后各层均以BB-RBM模型进行训练,直到最顶层训练结束,由此得到DBN网络的权重W和偏置B的初始参数;步骤八:当DBN模型中的所有RBM训练完之后,训练进入到最上层的有监督学习方法中的神经网络,顶层神经网络将底层DBN模型提取的高级抽象特征作为输入,继续进行网络的训练,神经网络对已训练模型进行了一个参数微调,得到最优解。

百度查询: 陕西科技大学 变电站电气设备温度预测方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。