买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】形貌测量系统_ASML荷兰有限公司_201680074778.4 

申请/专利权人:ASML荷兰有限公司

申请日:2016-11-30

公开(公告)日:2020-09-15

公开(公告)号:CN108474651B

主分类号:G01B11/25(20060101)

分类号:G01B11/25(20060101);G01N21/95(20060101);G01B11/30(20060101);H01L21/66(20060101)

优先权:["20151222 US 62/271,213","20160816 US 62/375,774"]

专利状态码:有效-授权

法律状态:2020.09.15#授权;2018.09.25#实质审查的生效;2018.08.31#公开

摘要:一种形貌测量系统,包括:辐射源;第一光栅;成像光学装置;移动机构;检测光学装置;第二光栅;和检测器。所述辐射源被配置成产生包括紫外辐射的辐射束,且包括用以产生紫外辐射的发光二极管。所述第一光栅被配置成图案化所述辐射束。所述成像光学装置被配置成在衬底上的目标部位处形成所述第一光栅的第一图像。所述移动机构能够操作以将所述衬底相对于所述第一光栅的所述图像而移动,使得所述目标部位相对于所述衬底而移动。所述检测光学装置被配置成从所述衬底的所述目标部位接收辐射且在所述第二光栅处形成所述第一图像的像。所述检测器被配置成接收透射通过所述第二光栅的辐射且产生输出信号。

主权项:1.一种用于确定衬底的形貌的测量系统,所述系统包括:辐射源,配置成产生辐射束,所述辐射源包括用以提供辐射的多个发光二极管,所述多个发光二极管中的至少两个具有不同的波长光谱;第一图案形成装置,配置成图案化所述辐射束;光学装置,配置成在所述衬底上的目标部位处形成所述第一图案形成装置的图像;移动机构,能够操作以将所述衬底相对于所述第一图案形成装置的所述图像而移动,使得所述目标部位相对于所述衬底而移动;检测光学装置,配置成接收从所述衬底的所述目标部位反射的辐射且在光栅处形成第一图像的像;和检测器,配置成接收透射通过所述光栅的辐射且产生输出信号,其中所述辐射源具有第一操作模式和第二操作模式,其中在所述第一操作模式中,所述辐射束具有第一光谱强度分布,相对于第二操作模式,所述第一光谱强度分布提供所述测量系统的增强的性能,其中在所述第二操作模式中,所述辐射束具有第二光谱强度分布,所述第二光谱强度分布减小覆盖所述衬底的抗蚀剂的预先曝光的风险,其中所述辐射源在确定所述衬底的形貌时处于第一操作模式,且在确定所述衬底的形貌之前处于第二操作模式。

全文数据:形貌测量系统[0001]相关申请的交叉引用[0002]本申请要求于2015年12月22日递交的美国申请62271,213和于2〇16年8月16日递交的美国申请62:375,774的优先权,并且它们的全部内容以引用的方式并入本文。技术领域[0003]本说明书涉及一种用于确定衬底的形貌的测量系统,所述系统包括:辐射束,辐射源包括用以提供辐射的发光二极管;第一图案形成装置,配置成图案化所述辐射束;光学装置,配置成在衬底的目标部位处形成第一图案形成装置的图像;检测光学装置,配置成接收从衬底的目标部位反射的辐射且在光栅处形成第一图像的图像;以及检测器,配置成接收透射通过光栅的辐射且产生输出信号。所述测量系统可形成光刻设备的一部分。背景技术[0004]光刻设备是构造成将所需的图案施加到衬底上的机器。例如,光刻设备可以用于集成电路ic的制造。光刻设备可以例如将来自第二图案形成装置例如掩模的图案投影到设置在衬底例如硅晶片上的辐射敏感材料抗蚀剂层上。[0005]在将图案从第二图案形成装置投影到设置在衬底上的辐射敏感材料层上之前,测量衬底的形貌。为了实现这个目的,这样的光刻设备可具备前述形貌测量系统。形貌测量系统测量跨衬底的表面的衬底高度。这些高度测量结果能够被用于形成高度图,该高度图帮助将图案精确地投影到衬底上。发明内容[0006]可需要提供例如消除或减轻无论是在本文中或是在别处所给出的现有技术的问题中的一个或更多个问题的形貌测量系统。[0007]根据一方面,提供一种用于确定衬底的形貌的测量系统,所述系统包括:辐射源,配置成产生辐射束,其中所述辐射源包括用以提供辐射的发光二极管;第一图案形成装置,配置成图案化所述辐射束;光学装置,配置成在所述衬底上的目标部位处形成所述第一图案形成装置的图像;移动机构,能够操作以使所述衬底相对于所述第一光栅的所述图像而移动,使得所述目标部位相对于所述衬底而移动;检测光学装置,配置成接收从所述衬底的所述目标部位反射的辐射且在光栅处形成所述第一图像的像;和检测器,配置成接收透射通过所述光栅的辐射且产生输出信号。由所述发光二极管提供的所述辐射可主要由紫外辐射组成。由所述发光二极管提供的所述辐射可主要由可见光辐射组成。由所述发光二极管提供的所述辐射可包括紫外辐射、可见光辐射或二者。[0008]根据这方面的所述测量系统可具有例如一个或更多个优点。另外或替代地,在使用紫外辐射的情况下,测量系统可提供比可见光和或红外辐射更佳的测量性能。此外,诸如紫外发光二极管的发光二极管LED相比于诸如气体放电灯例如,氙等离子体源)等其他已知UV辐射源具有一个或更多个优点。具体地,可快速地且容易地接通和断开led,而不显者影响其寿命,这可避免对复杂遮蔽件布置的需要。此外,发光二极管相比于更复杂的气体放电源通常更便宜且可更普遍地得到。[0009]辐射源可包括多个发光二极管。所述多个发光二极管中的至少两个可具有不同波长光谱。[0010]这种布置允许使宽带紫外源由发光二极管形成。有利地,这种布置允许形成宽带紫外源,其中可根据需要来修整波长光谱。此外,所述布置允许通过改变多个发光二极管的相对强度而调整辐射源的光谱。[0011]应了解,多个发光二极管中的每个可具有不同波长光谱。替代地,多个发光二极管中的至少两个可具有相同或相似的波长光谱。具有实质上相同的光谱的两个或更多个发光二极管中的每个可:(a允许辐射源内的某种程度的冗余;和或b允许针对每个波长分量的输出强度或功率的操作范围增加;和或c允许实质上相同的发光二极管中的每个在较低强度下操作,这可增加发光二极管的寿命。在一个实施例中,辐射源可包括例如中心波长分别是2阳纳米、280纳米、3〇〇纳米、32〇纳米和:340纳米的五个发光二极管。具有其他中心波长的发光二极管可用于第一辐射源中,这些中心波长是例如约405纳米、约470纳米、约515纳米、约ei2纳米、约782纳米和或约8S0纳米。具有约4〇5纳米的波长的辐射通常被视为紫色,且具有约47〇纳米的波长的辐射通常被视为蓝色。因此,具有约405纳米的中心波长的发光二极管常常被称作紫色发光二极管。替代地,紫色发光二极管有时被称作近UV发光二极管。具有470纳米的波长的发光二极管常常被称作蓝色发光二极管。进一步考虑这种情形,具有515纳米的波长的辐射通常被视为青色;具有612纳米的波长的辐射通常被视为橙色,且具有782纳米的波长的辐射是在红外线范围内。[0012]辐射源还可包括调整机构,所述调整机构被配置成控制多个发光二极管中的一个或更多个发光二极管的相对强度。[0013]测量系统还可包括控制器,所述控制器被配置成产生多个控制信号,所述多个控制信号中的每个由多个发光二极管中的一不同的发光二极管接收,每个发光二极管的输出强度或功率依赖于其从控制器接收的控制信号。[0014]因此,控制信号充当发光二极管的驱动信号。在一个实施例中,控制信号可用以将相应的发光二极管在如下“接通”状态与“断开”状态之间切换,例如,在“接通”状态中,发光二极管发射辐射束;例如,在“断开”状态中,发光二极管不产生辐射束。另外或替代地,控制信号可通过某一强度范围控制发光二极管中的每个的输出强度或功率。[0015]辐射源可具有多个不同操作模式,辐射束的光谱强度分布依赖于辐射源的选定操作模式。这种布置可允许出于多个不同目的而使用测量系统,其中辐射束针对每个目的具有不同光谱强度分布。[0016]控制器可操作以针对多个操作模式中的每个操作模式产生多个控制信号的不同集合。即,在每个不同操作模式中,控制器可操作以产生多个控制信号,所述多个控制信号中的每个由多个发光二极管中的一不同的发光二极管接收。在每个操作模式中,可产生多个控制信号的不同集合。即,对于每对的两个操作模式,由多个发光二极管中之一所接收的多个控制信号中的至少一个在所述两个操作模式中可不同。以这种方式,辐射束的光谱强度分布依赖于控制器的选定操作模式。[0017]辐射源可具有:第一操作模式和第二操作模式,且其中在第一操作模式中,辐射束包括在第一光谱范围内的辐射;且其中在第二操作模式中,辐射束包括在第二光谱范围内的辐射,所述第二光谱范围是所述第一光谱范围的子范围。这种布置提供如下两种模式:具有较大光谱范围的第一操作模式,其可提供测量系统的增强的性能;和具有较小光谱范围的第二操作模式,其可减少覆盖有抗蚀剂的衬底被测量系统预先曝光的风险。[0018]另外或替代地,辐射源可具有:第一操作模式和第二操作模式,且其中在第一操作模式中,辐射束具有第一光谱强度分布;且其中在第二操作模式中,辐射束具有第二光谱强度分布,所述第二光谱强度分布相对于所述第一光谱强度分布在所述第一光谱强度分布的较短波长部分中有所减少。这种布置提供如下两种模式:具有第一光谱强度分布的第一操作模式,其可提供测量系统的增强的性能;和具有第二光谱强度分布的第二操作模式,其可减少覆盖有抗蚀剂的衬底被测量系统预先曝光的风险。[0019]在第二操作模式中,具有最短中心波长的多个发光二极管中的一个或更多个相对于第一操作模式具有减少的强度。[0020]测量系统还可包括光谱检测器,所述光谱检测器被配置成确定辐射束的波长光谱的一个或更多个特性,所述光谱检测器包括至少一个检测元件。[0021]所述至少一个检测元件可包括光电二极管。[0022]所述至少一个检测元件可由检测器提供。即,测量系统的检测器可用以确定辐射束的波长光谱的一个或更多个特性。对于这种实施例,理想地使用具有恒定或己知表面的参考衬底来进行辐射束的波长光谱的一个或更多个特性的测量。在辐射束的波长光谱的一个或更多个特性的测量期间,参考衬底可保持静止。[0023]另外或替代地,可使至少一个检测元件与检测器分离。对于这种实施例,光谱检测器可包括分束器,所述分束器被布置成使辐射束的一部分转向至所述至少一个检测元件。应了解,此处术语“分束器”意在涵盖经被布置成将辐射束的一部分导向到至少一个检测元件的任何光学装置。辐射束的另一部分可沿着测量系统的主光学路径而继续,所述光学路径可从辐射源延伸至检测器。因此,术语“分束器”可包括例如常规的分束器或衍射光栅。在一实施例中,术语“分束器”可包括产生一些杂散辐射的光学元件,所述杂散辐射将会以其他方式从光学路径失去且例如由额外光学装置收集且被导向到至少一个检测元件。分束器可将辐射束的部分直接地导向到至少一个检测器或经由一个或更多个额外光学元件而间接地导向到至少一个检测器。分束器可安置于测量系统中的任何合适点处,例如介于辐射源与检测器之间的任何位置。[0024]光谱检测器可包括:分离光学装置,其被布置成将其接收的辐射束的一部分分离成多个成分光谱分量(constituentspectralcomponent;和多个检测元件,所述多个检测元件中的每个能够操作以确定所述多个成分光谱分量中的一不同的成分光谱分量的功率或强度。[0025]分离光学装置可包括诸如棱镜等色散光学元件。多个成分光谱分量中的每个可对应于起源于发光二极管中的一不同的发光二极管的辐射束的分量。[0026]光谱检测器可操作以输出指示辐射束的波长光谱的特性的一个或更多个信号。例如,至少一个检测元件中的每个可操作以输出指示其从分离光学装置所接收的福射束的强度或功率的信号。由至少一个检测元件接收的辐射束的强度或功率包含与辐射束的波长光谱的特性相关的信息。[0027]由光谱检测器输出的所述一个或更多个信号或所述一个或更多个信号中的每个f目号可由控制器接收。可由控制器依赖于由光谱检测器输出的一'个或更多个信号而产生控制信号。[0028]以这种方式,测量系统包括可用以例如稳定所述辐射束的波长光谱的反馈控制回路。[0029]控制器可操作以控制多个发光二极管的输出,使得发光二极管中的每个是脉冲调制的。[0030]发光二极管中的每个可以是脉冲调制的,使得来自发光二极管的脉冲与具有不同波长光谱的发光二极管的脉冲异相。以这种方式,辐射源的输出可产生多个脉冲,其中脉冲通过多个不同波长循环。因此,这种波长切换提供辐射束的波长调制。[0031]检测器能够在时序上分辨每个脉冲。这可允许从单个测量序列确定多个高度图即,在测量系统下方的衬底的单次扫描期间),所述多个高度图中的每个是使用不同波长即来自不同发光二极管而确定的。[0032]辐射源可还包括组合光学装置,所述组合光学装置被布置成从多个发光二极管中的每个接收辐射且将辐射组合,使得来自所述多个发光二极管中的每个的辐射在空间上重叠以形成辐射束。[0033]组合光学装置可包括一个或更多个二向色镜,所述一个或更多个二向色镜被布置成接收两个输入辐射束且输出包括所述两个输入辐射束中的每个的一部分的至少一个辐射束。[0034]组合光学装置可操作以产生提供在第一图案形成装置上的波长光谱的大体上均一的空间分布的组合福射束。即,第一图案形成装置上的每个不同空间部位接收具有实质上相同波长光谱的辐射。波长光谱可具有任何合适形式。[0035]辐射束可大体上均一地照射第一图案形成装置。[0036]辐射束可以按大体上均一的角度分布而照射第一图案形成装置。[0037]测量系统还可包括被布置成将辐射束透射至第一图案形成装置的透射光学装置。透射光学装置可包括光纤阵列。应了解,透射光学装置可包括一个或更多个额外光学元件,诸如例如一个或更多个反射镜和或一个或更多个透镜。[0038]辐射束可包括在200纳米至似5纳米的范围内的紫外辐射。例如,辐射束可包括在225纳米至400纳米的范围内的紫外辐射。例如,辐射束可包括在M5纳米至350纳米的范围内的紫外辐射。另外或替代地,辐射束可包括可见光辐射和或在350纳米至1〇〇〇纳米的范围内的辐射。[0039]测量系统还可包括处理器,所述处理器被配置成依赖于输出信号而确定衬底的高度。[0040]根据另外一方面,提供一种测量设备,包括多个根据本文中所描述的测量系统。[0041]所述多个测量系统可共用一公共辐射源。[0042]根据另外一方面,提供一种用于根据本文中所描述的测量系统中的辐射源,所述辐射源包括:多个发光二极管,所述多个发光二极管中的每个发光二极管具有一不同的波长光谱;组合光学装置,布置成从所述多个发光二极管中的每个发光二极管接收辐射且将辐射组合,使得来自所述多个发光二极管中的每个发光二极管的辐射在空间上重叠以形成辐射束;和控制器,能够操作以产生多个控制信号,所述多个控制信号中的每个控制信号由所述多个发光二极管中的一不同的发光二极管接收,每个发光二极管的输出强度或功率依赖于其从所述控制器所接收的所述控制信号。[0043]这种布置允许宽带紫外源由发光二极管形成。有利地,这种布置允许形成宽带紫外源,其中可通过合适选择由控制器产生的控制信号而根据要求来修整波长光谱。此外,所述配置允许通过改变多个发光二极管的相对强度而调整辐射源的光谱。[0044]辐射源可在适当时包括测量系统的特征中的任一个。[0045]辐射源还可包括光谱检测器,所述光谱检测器能够操作以确定辐射束的波长光谱的一个或更多个特性。[0046]光谱检测器可包括至少一个检测元件。[0047]光谱检测器可包括分束器,所述分束器被布置成将辐射束的一部分转向到至少一个检测元件。[0048]光谱检测器可包括:分离光学装置,布置成将其接收的辐射束的一部分分离成多个成分光谱分量;和多个检测元件,所述多个检测元件中的每个能够操作以确定所述多个成分光谱分量的一不同的成分光谱分量的功率或强度。[0049]光谱检测器可操作以输出指示辐射束的波长光谱的特性的一个或更多个信号。[0050]由光谱检测器输出的所述或每个信号可由控制器接收,且可由控制器依赖于所接收的所述或每个信号而产生控制信号。[0051]控制器可操作以控制多个发光二极管的输出,使得使发光二极管中的每个发光二极管是脉冲调制的。[0052]发光二极管可以是脉冲调制的,使得来自发光二极管中的一个或更多个中的每个发光二极管的脉冲与一个或更多个其他发光二极管异相。[0053]辐射源可具有多个不同操作模式,辐射束的光谱强度分布依赖于辐射源的选定操作模式。这种布置可允许出于多个不同目的而使用福射源,其中福射束针对每个目的具有不同光谱强度分布。[0054]控制器可操作以针对多个操作模式中的每个操作模式产生多个控制信号的不同集合。即,在每个不同操作模式中,控制器可操作以产生多个控制信号,所述多个控制信号中P每个控制信号由多个发光二极管中的一不同的发光二极管接收。在每个操作模式中,可产生多个控制信号的不同集合。即,对于每对的两个操作模式,由多个发光二极管中之一接收的多个控制信号中的至少一个控制信号在所述两个操作模式中是不同的。以这种方式,辐射束的光谱强度分布依赖于控制器的选定操作模式。[0055]辐射源可具有:第一操作模式和第二操作模式,且其中在第一操作模式中,辐射束包括在第一光谱范围内的辐射;且其中在第二操作模式中,辐射束包括在第二光谱范围内的辐射,所述第二光谱范围是所述第一光谱范围的子范围。这种布置提供如下两种模式:具有较大光谱范围的第一操作模式,其可提供测量系统的增强的性能;和具有较小光谱范围的第二操作模式,其可减少覆盖有抗蚀剂的衬底被测量系统预先曝光的风险。[0056]辐射源可具有:第一操作模式和第二操作模式,且其中在第一操作模式中,辐射束具有第一光谱强度分布;且其中在第二操作模式中,辐射束具有第二光谱强度分布,所述第二光谱强度分布相对于所述第一光谱强度分布在所述第一光谱强度分布的较短波长部分中有所减少。这种布置提供如下两种模式:具有第一光谱强度分布的第一操作模式,其可提供测量系统的增强的性能;和具有第二光谱强度分布的第二操作模式,其可减少覆盖有抗蚀剂的衬底被测量系统预先曝光的风险。[0057]在第二操作模式中,具有最短中心波长的多个发光二极管中的一个或更多个发光二极管相对于第一操作模式可具有减少的强度。[0058]根据一方面,提供一种光刻设备,所述光刻设备包括:照射系统,配置成调节福射束;支撑件,构造成支撑图案形成装置,所述图案形成装置能够在所述辐射束的横截面中向所述辐射束赋予图案以形成图案化的辐射束;衬底台,构造成保持衬底;投影系统,配置成将所述图案化的辐射束投影至所述衬底的目标部分上;和根据本文中所描述的测量系统或根据本文中所描述的测量设备。'[0059]可将不同方面和特征组合在一起。可将给定方面的特征与一个或更多个其他方面或特征组合。附图说明[0060]现在参照随附的示意性附图来仅以举例的方式描述本发明的实施例。在附图中:[0061]图1A示意性地描绘根据一实施例的包括形貌测量系统的光刻系统;[0062]图1B示出可表示图1A的两个衬底中的任一个的衬底W的平面图;[0063]图1C示出可由图1A的光刻系统使用的图案形成装置的平面图;[0064]图2示意性地更详细描绘形貌测量系统;[0065]图3示意性地图示可形成图2所示形貌测量系统的部分的根据一实施例的辐射源;[0066]图4示意性地图示可形成图3所示辐射源的部分的束组合光学装置;[0067]图5示意性地图示可形成图2所示形貌测量系统的部分的根据一实施例的辐射源;[0068]图6A示出在第一操作模式中的图5的辐射源的光谱强度分布实线和针对在第一操作模式中的辐射源的八个发光二极管中的每一个的光谱强度分布;[0069]图6B示出在第二操作模式中的图5的辐射源的光谱强度分布实线和针对在第二操作模式中的辐射源的八个发光二极管中的每一个的光谱强度分布;以及[0070]图7示出针对供深紫外和极紫外光刻设备使用的一些抗蚀剂的依据波长而变化的吸收系数。具体实施方式[0071]虽然在本文中具体地参考了光刻设备在制造1C中的应用,但应该理解的是,这里所描述的光刻设备可以具有其它应用,例如制造集成光学系统、磁畴存储器的引导和检测图案、液晶显示器LCD、薄膜磁头等。本领域技术人员将会认识到,在这些替代性的应用情形中,这里使用的任何术语“晶片”或“管芯”都可以分别被认为与更加上位的术语“衬底”或“目标部分”同义。这里所指的衬底可以在曝光之前或之后进行处理,例如在轨道一种典型地将抗蚀剂层施加到衬底上并且对已曝光的抗蚀剂进行显影的工具)、量测工具或检查工具中。在可应用的情况下,可以将这里所公开的内容应用于这种和其它衬底处理工具中。另外,所述衬底可以被处理一次以上,例如为了产生多层1C,使得本文中使用的术语“衬底”也可以表示己经包含多个已处理层的衬底。[0072]这里使用的术语“辐射”和“束”包含全部类型的电磁辐射,所述电磁辐射包括紫外UV辐射例如具有365nm、248nm、193nm、157nm或126nm的波长和极紫外EUV辐射例如具有在5nm至20nm的范围内的波长)以及诸如离子束或电子束等粒子束。[0073]本文中使用的术语“图案形成装置”应该被广义地理解为表示一种能够用于将图案在辐射束的横截面中赋予辐射束,以便在衬底的目标部分中形成图案的装置。应该注意,赋予辐射束的图案可能不与在衬底的目标部分中所需的图案完全对应。通常,赋予辐射束的图案将会与在目标部分例如集成电路中形成的器件中的特定的功能层相对应。[0074]图案形成装置可以是透射式的或反射式的。图案形成装置的示例包括掩模、可编程反射镜阵列以及可编程的LCD面板。掩模在光刻术中是公知的,并且包括诸如二元掩模、交^相^掩模、衰减相移掩模以及各种混合掩模类型之类的掩模类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置,每一个小反射镜都可以独立地倾斜,以便在不同的方向上反射入射的辐射束;这样,所反射的辐射束被图案化。[0075]支撑结构保持图案形成装置。支撑结构以依赖于图案形成装置的方向、光刻设备的设计、以及诸如例如图案形成装置是否被保持在真空环境中等其它条件的方式保持图案形成装置。支撑件可以采用机械夹持技术、真空夹持技术、或者例如在真空条件下的静电夹持等其它夹持技术来保持图案形成装置。支撑结构可以是框架或台,例如,它可以根据需要是固定的或者可移动的,并且可以确保图案形成装置例如相对于投影系统位于所需的位置。可以认为本文中使用的任何术语“掩模版”或“掩模”可以认为是与更加上位的术语“图案形成装置”同义。[0076]本文中使用的术语“投影系统”应该被广义地解释为包括各种类型的投影系统,包括折射型光学系统、反射型光学系统以及反射折射型光学系统,如对于所使用的曝光辐射或者诸如使用浸没液体或使用真空之类等其它因素所适合的。可以认为本文中使用的任何术语“投影透镜”被认为是与更加上位的术语“投影系统”同义。[0077]本文中使用的术语“照射系统”可以包括各种类型的光学部件,包括折射型、反射型和反射折射型光学部件,用以对辐射束进行引导、成形或控制,并且这种部件在下文中还可以被统一地或单独地称为“透镜”。[0078]光刻设备还可以是如下类型:其中衬底被浸没在具有相对高折射率的液体例如水)中,以便填充投影系统的最终元件和衬底之间的空间。本领域中公知的是,浸没技术用于增加投影系统的数值孔径。[0079]图1A示意性地示出了一种根据特定实施例的光刻设备。该光刻设备包括:[00S0]-照射系统照射器IL,配置成用于调节辐射束PB例如UV辐射或DUV辐射);[0081]—框架mf;[0082]-支撑结构例如,掩模台MT,用于支撑图案形成装置例如掩模MA;[0083]—两个衬底台(例如晶片台WT1、WT2,各自配置成用于分别保持衬底例如,涂覆有抗蚀剂的晶片W1、W2;和[0084]-投影系统(例如折射式投影透镜PL,配置成将由图案形成装置MA赋予辐射束PB的图案成像到由两个衬底台WT1、WT2之一所保持的衬底W的目标部分C例如,包括一个或更多个管芯上。[0085]框架MF是与诸如振动等外部影响实质上隔离的振动隔离框架。例如,框架MF可由接地端上腿雛架細示触-个或更乡个声学阻触装件細示而支撑,以便将框架MF与基部框架的振动隔离。所述一个或更多个声学阻尼安装件可被主动地控制以隔由基部框架和或由隔离框架MF自身引入的振动。[0086]在图1A所描绘的双平台光刻设备中,在左侧设置对准系统as和形貌测量系统TMS,且在右侧设置投影系统PL。投影系统PL、对准系统AS和形貌测量系统TMS被连接至隔离框架MF〇[0087]支撑结构MT经由第一定位装置PM而可移动地安装至框架册。第一定位装置四可用以使图案形成装置MA相对于框架MF和连接至框架^^的投影系统PL移动且准确地定位图案形成装置MA。[0088]衬底台WT1、WT2分别经由第一衬底定位装置PW1和第二衬底定位装置pff2而可移动地安装至框架MF。第一衬底定位装置PW1和第二衬底定位装置PW2可用以使分别由衬底台WT1、WT2保持的衬底W1、W2移动且相对于框架MF和连接至框架MF的投影系统PL、对准系统AS以及形貌测量系统TMS准确地定位衬底W1、W2。支撑结构MT和衬底台WT1、WT2可被统称作载物台。第一衬底定位装置PW1和第二衬底定位装置PW2可各自被视为一扫描机构,其能够操作以沿着扫描路径相对于辐射束移动衬底台WT1、WT2,使得辐射束跨越衬底W的目标部分C进行扫描。在一实施例中,衬底台WT1、WT2之一可不保持衬底且可代替地用于例如测量、清洁等等,其与另一衬底台WT1、WT2上的衬底的例如曝光或卸载并行地进行[0089]因此,图1A所示光刻设备是具有两个衬底台WT1、WT2的类型,其可被称作双平台设备。在这些“多平台”机器中,并行地使用两个衬底台WT1、WT2,其中对所述衬底台之一进行预备步骤,同时将另一衬底台用于曝光。[0090]在图1A中,衬底台訂1被安置于左侧且衬底台WT2被安置于右侧。在这种配置中,衬底台WT1可用以在由其保持的衬底W1的曝光之前使用对准系统AS和形貌测量系统TMS如下文将更充分地所描述来进行关于所述衬底W1的各种预备步骤。同时地,衬底台WT2可用于由衬底台WT2保持的另一衬底W2的曝光。一旦已曝光由衬底台WT2保持的衬底W2且已执行关于由衬底台WT1保持的衬底W1的预备步骤,则两个衬底台\m、WT2调换位置。随后,将由衬底台WT1保持的衬底W1用辐射曝光,且利用新衬底来替换先前已由辐射曝光的、由衬底台ffT2保持的衬底W2,且执行关于新衬底的各种预备步骤。[0091]因此,两个衬底台WT1、WT2中的每个可安置于图1A的左侧或右侧。除非另有陈述,否则在下文中,衬底台WT1通常将指在当时已安置于左侧的衬底台,且衬底台訂2通常将指在当时己安置于右侧的衬底台。[0092]图1B示出可表示图1A的两个衬底W1、W2中的任一个的衬底W的平面图。在下文中,除非另有陈述,否则光刻设备的左侧和右侧的衬底将被称作衬底W。图1C示出图案形成装置MA的平面图,图案形成装置MA具备图案形成装置对准标记被示意性地描绘为方框Ml、M2。[0093]如此处所示出的,光刻设备是透射型的(例如采用透射型掩模)。可替代地,光刻设备可以是反射型的例如采用如上所述的类型的可编程反射镜阵列)。[0094]照射器IL接收来自辐射源S0的辐射束。该辐射源S0和光刻设备可以是分立的实体例如当辐射源so是准分子激光器时)。在这种情况下,不会将辐射源S0视为形成光刻设备的一部分,并且借助包括例如合适的定向反射镜和或扩束器的束传递系统BD将辐射束从辐射源S0传到照射器IL。在其他情况下,例如,当所述源是汞灯时,所述源可以是所述设备的一体部件。所述照射器IL可被称作辐射系统。替代地,可以将辐射源SO和照射器IL以及必要时设置的束传递系统BD—起统称作辐射系统。[0095]所述照射器IL可改变所述束的强度分布。所述照射器可布置成用以限制所述辐射束的径向范围,使得在照射器IL的光瞳平面中的环形区内所述强度分布是非零的。另外或替代地,照射器IL也可操作以限制所述束在光瞳平面中的分布,使得在光瞳平面中的多个相等地间隔开的区段中的强度分布是非零的。所述辐射束在所述照射器IL的光瞳平面中的强度分布可被称为照射模式。[0096]所述照射器IL可包括被配置成调整所述束的强度分布的调整器AM。通常,可以对照射器的光瞳平面中的强度分布的至少外部和或内部径向范围通常分别被称作〇外部和〇内部进行调整。照射器IL也可操作以改变所述束在照射器的光瞳平面中的角度分布。例如,照射器IL可操作以变更强度分布非零的位置处的光瞳平面中的区段的数目和角度范围。通过调整所述束在照射器的光瞳平面中的强度分布,可实现不同照射模式。例如,通过限制照射器IL的光瞳平面中的强度分布的径向范围和角度范围,所述强度分布可具有诸如例如偶极、四极或六极分布等多极分布,如本领域中已知的。可通过将提供所述照射模式的光学装置插入至照射器IL中而获得所需照射模式。[0097]照射器IL可操作以变更所述束的偏振且可操作以使用调整构件AM来调整所述偏振。跨越所述照射器IL的光瞳平面的辐射束的偏振状态可被称作偏振模式。使用不同偏振模式可允许在形成于衬底W上的图像中实现较大对比度。辐射束可以是非偏振的。替代地,照射器IL可被布置成使辐射束线性地偏振。辐射束的偏振方向可跨越照射器IL的整个光瞳平面而变化,即,辐射的偏振方向可在照射器IL的光瞳平面中的不同区中不同。可依赖于照射模式来选择福射的偏振状态。[0098]此外,照射器IL通常包括各种其它部件,例如整合器IN和聚光器C0。照射器IL提供经过调节的辐射束PB,该辐射束PB在其横截面中具有所需的均匀性和强度分布。[0099]经过调节的辐射束PB的形状和空间)强度分布由照射器IL的光学装置限定。在扫描模式中,经过调节的辐射束PB可使得其在图案形成装置MA上形成大体上矩形的辐射带。辐射带可被称作曝光狭缝或狭缝)。狭缝可具有较长尺寸其可被称作狭缝的长度和较短尺寸其可被称作狭缝的宽度)。狭缝的宽度可对应于扫描方向(图1中的y方向),且狭缝的长度可对应于非扫描方向(图1中的x方向)。在扫描模式中,狭缝的长度限制了可在单次动态曝光中曝光的目标部分C在非扫描方向上的范围。与此对比,可在单次动态曝光中曝光的目标部分C在扫描方向上的范围是由扫描运动的长度确定。[0100]术语“狭缝”、“曝光狭缝”或“带或辐射”可被互换地使用以指代由照射器IL在与光刻设备的光轴垂直的平面中产生的辐射带。此平面可处于或接近于图案形成装置嫩或衬底W处。术语“狭缝轮廓”、“辐射束的轮廓”、“强度轮廓”和“轮廓”可被互换地使用以指代尤其在扫描方向上的狭缝的空间强度分布的形状。_[0101]在一实施例中,照射器IL包括至少两个遮蔽片maskingblade在图1A中不意性地示出为B。所述两个遮蔽片中的每个大体上平行于狭缝的长度,所述两个遮蔽片安置在狭缝的相反侧上。每个遮蔽片可在回缩位置和插入位置之间独立地移动,在回缩位置,遮蔽片未安置于辐射束PB的路径中;在插入位置,遮蔽片阻挡辐射束PB。遮蔽片安置于照射器1L的场平面中。因此,通过将遮蔽片移动至辐射束的路径中,可急剧地截断辐射束TO的轮廓,因此在扫描方向上限制辐射束PB的场的范围。遮蔽片可用以控制曝光区的哪些部分接收辐射。[0102]图案形成装置MA也安置于光刻设备的场平面中。在一个实施例中,遮蔽片可邻近于图案形成装置MA而安置,使得遮蔽片和图案形成装置MA二者基本上处于同一平面中。替代地,遮蔽片可与图案形成装置MA分离,使得它们各自处于光刻设备的不同场平面中,且可在遮蔽片与图案形成装置MA之间设置合适的聚焦光学装置未图示)。[0103]照射器IL包括强度调整器IA图1A中示意性地示出)。强度调整器IA能够操作以在辐射束的相对侧上衰减所述辐射束,如当前描述。强度调整器IA包括成对布置的多个可移动指形件,每对可移动指形件在狭缝的每侧上包括一个指形件(即,每对指形件在y方向上分离)。成对的指形件沿狭缝的长度而布置即,在x方向上延伸)。每个可移动指形件可在扫描方向(y方向)上独立地移动。即,指形件可在与狭缝的长度垂直的方向上移动。在使用中,每个可移动指形件可在扫描方向上独立地移动。例如,每个可移动指形件可在至少回缩位置和插入位置之间移动,在回缩位置中,可移动指形件未安置于辐射束的路径中;在插入位置中,可移动指形件部分地阻挡辐射束。通过移动所述指形件,可调整狭缝的形状和或强度分布。[0104]所述场可处于指形件的半影中从而使得指形件并不急剧地截止所述辐射束PB。所述成对指形件可用以沿着狭缝的长度应用所述辐射束PB的不同程度的衰减。例如,指形件可用以确保跨所述狭缝的宽度的辐射束PB的强度轮廓的整体或积分沿着所述狭缝的长度基本上恒定。[0105]射出所述照射器IL的辐射束PB入射到保持在支撑结构MT上的图案形成装置例如掩模MA上。在穿过图案形成装置MA之后,辐射束TO穿过投影系统PL,该投影系统PL将辐射束聚焦到衬底W的目标部分C上。借助于第二衬底定位装置PW2和位置传感器IF例如干涉仪装置),可以精确地相对于所述框架MF移动所述衬底台WT2,例如以便将不同的目标部分C定位在辐射束PB的路径中。类似地,例如在从掩模库的机械获取之后或者在扫描期间,可以将第一定位装置PM和另一个位置传感器(图1A中未明确地示出)用于相对于框架MF精确地定位图案形成装置MA。通常,可以借助形成定位装置PM、PW1和PW2的一部分的长行程模块粗定位和短行程模块精定位来实现载物台MT和WT1、WT2的移动。可使用图案形成装置对准标记Ml、M2和衬底对准标记PI、P2来对准所述图案形成装置MA和衬底W。[0106]投影系统PL可将缩小因子应用于辐射束PB,从而形成特征小于图案形成装置MA上的对应特征的图像。例如,可应用值为4的缩小因子。[0107]在扫描模式中,第一定位装置PM能够操作以使支撑结构MT相对于己由照射器IL沿着扫描路径调节的辐射束PB移动。在一实施例中,支撑结构MT以恒定扫描速度VMT在扫描方向上线性地移动。如上文所描述,所述狭缝被定向成使得其宽度在扫描方向(其与图1的y方向重合上延伸。在任何情况下,由狭缝照射的图案形成装置MA上的每个点将通过投影系统PL而成像至衬底W的平面中的单个共轭点上。随着支撑结构MT在扫描方向上移动,图案形成装置MA上的图案以与支撑结构MT的速度相同的速度跨越所述狭缝的宽度而移动。具体地,图案形成装置MA上的每个点以速度vMT在扫描方向上跨越所述狭缝的宽度移动。由于这种支撑结构MT的运动,与图案形成装置MA上的每个点对应的衬底W的平面中的共轭点将在衬底台WT2的平面中相对于狭缝而移动。[0108]为了在衬底W上形成图案形成装置MA的图像,移动衬底台WT2,使得图案形成装置MA上的每个点在衬底W的平面中的共轭点相对于衬底W保持静止。衬底台WT2相对于投影系统PL的速度幅度和方向二者)由投影系统PL的缩小率和图像反转特性在扫描方向上)确定。具体地,如果投影系统PL的特性是使得形成于衬底W的平面中的图案形成装置MA的图像在扫描方向上反转,则应在与支撑结构MT相反的方向上移动衬底台WT2。即,衬底台WT2的运动应反向平行于支撑结构MT的运动。另外,如果投影系统PL将缩小因子a应用于辐射束PB,则由每个共轭点在给定时间段中行进的距离将比由图案形成装置上的对应点行进的距离小了a倍。因此,衬底台WT2的速度的幅度|wt|应是|肅|a。[0109]在目标部分C的曝光期间,照射器IL的遮蔽片可用以控制所述辐射束PB的狭缝的宽度,这继而限制了所述曝光区分别在所述图案形成装置MA和所述衬底W的平面中的范围。即,照射器的遮蔽片充当用于光刻设备的场光阑。[0110]在使用扫描模式的情况下,光刻设备能够操作以将具有基本上固定的区域的衬底w的目标部分c由辐射曝光。例如,目标部分c可包括管芯的一部分、一个管芯或多个管芯。可在多个步骤中将单个衬底由辐射曝光,每个步骤涉及目标部分C的曝光,接着是衬底W的移动。在第一目标部分C的曝光之后,光刻设备可操作以使衬底W相对于投影系统PL移动,使得另一目标部分C可由辐射曝光。例如,在衬底W上的两个不同目标部分C的曝光之间,衬底台WT2可操作以移动衬底W以便定位下一目标部分,使得其准备扫描经过曝光区。替代地,所描绘的设备可用于另一模式中,其中在将被赋予至束PB的图案投影至目标部分C上的同时,使支撑结构MT保持基本上静止,从而保持可编程图案形成装置,且移动或扫描衬底台WT2。在这种模式中,通常采用脉冲式辐射源,且在衬底台WT2的每次移动之后或在扫描期间的连续辐射脉冲之间根据需要而更新可编程第二图案形成装置。这种操作模式可易于应用到利用可编程图案形成装置诸如,上文所提及类型的可编程反射镜阵列)的无掩模光刻。[0112]也可采用上文所描述的使用模式的组合和或变型,或完全不同的使用模式。[0113]对准系统AS测量设置于衬底W上的对准标记(由图1B中的方框P1、P2示意性地描绘)的位置,衬底W被保持于左侧衬底台WT1上。另外,形貌测量系统TMS用以测量被保持在左侧衬底台WT1上的衬底W的表面的形貌,如下文进一步描述。第一衬底定位装置PW1和位置传感器其未在图1A中被明确地描绘可用以相对于框架MF和与其连接的对准系统AS和形貌测量系统TMS来准确地定位衬底台WT1。另外或替代地,可将形貌测量系统TMS设置于右侧、邻近于投影系统PL的底部。[0114]可使用形貌测量系统TMS来确定每个衬底W的表面的形貌,如当前所描述。[0115]图2是根据实施例的形貌测量系统TMS的示意图。辐射源2配置为产生辐射束4。可以设置光学装置6来引导和或聚焦辐射束4。辐射束4入射到第一图案形成装置20上。辐射束4在通过第一图案形成装置20时被图案化为具有所述第一图案形成装置20的图像。图案化的辐射束可以称作测量束22或者可替代地可以简称为辐射束)。[0116]测量束22通过光学装置10,该光学装置10配置为在衬底12上的目标部位19处形成所述第一图案形成装置20的图像。测量束22以入射角0入射到衬底12上。在箭头33所示的部位处形成第一光栅图像。[0117]测量束22被从衬底12重新引导(例如,反射,衍射,等等并通过检测光学装置14。检测光学装置14配置成接收被重新引导的测量束,并且形成第一光栅图像的像。第一光栅图像的这种像被形成在光栅16处。检测器18配置成接收透过所述光栅16的辐射。[0118]检测器18包括两个检测元件lSa、18b。所述光栅16分割从所述检测光学装置14所接收的辐射,使得所述辐射的一部分被引导至所述检测元件18a、18b中的每个检测元件。所述检测元件18a、18b中的每个检测元件检测入射在其上的辐射的强度。所述检测器18产生指示入射到所述两个检测元件18a、18b上的辐射的强度的输出信号S1。具体地,所述输出信号81可指示入射到所述两个检测元件18a、18b上的辐射的强度差。[0119]第二光栅16具备光栅结构。例如,光栅结构可包括周期性重复单元,S卩,针对一维情形,光栅结构可包括规则的线阵列。第二光栅16是透射光栅。然而,应了解,在替代实施例中,第二光栅16可包括反射光栅。[0120]所述检测元件18a、18b可以例如各自是光电二极管。使用光电二极管的优点在于,光电二极管具有快速的响应时间并且具有相对较低的成本。替代地,所述检测器可以包括成像检测器,例如电荷耦合器件CCD、有源像素传感器APS、或者任何其它适当形式的成像检测器。对于这些使用了成像检测器的实施例,来自成像检测器的输出可被转换为指示入射辐射强度的值。成像检测器可能具有比光电二极管慢的响应时间,从而可能降低测量衬底12的形貌的速度。[0121]在确定衬底12的形貌之前,可使用形貌测量系统TMS来进行一个或更多个初步测量。形貌测量系统TMS可用以测量在衬底12上的多个点处的衬底12的高度以便确定衬底12的高度图,如下文将进一步详细地所描述。形貌测量系统TMS可具有例如±2.5微米的数量级的有限测量范围。在确定衬底12的形貌之前(即,在确定高度图之前),形貌测量系统TMS可用来确定将确保衬底12的上部表面处于形貌测量系统TMS的测量范围内的衬底台WT1的位置在z方向上)。这可被称作“晶片捕捉”。可在z方向上移动衬底台WT1且因此移动衬底12的同时在x-y平面中在衬底12上的固定位置处执行晶片捕捉。在晶片捕捉期间,来自辐射源2的辐射测量束22入射到衬底12上。[0122]另外或替代地,在确定衬底12的形貌之前(S卩,在确定高度图之前),形貌测量系统TMS可用以确定衬底12的一个或更多个其他属性。例如,形貌测量系统TMS可用以例如通过确定大体上圆形衬底12的边缘来确定衬底12在x-y平面中的位置。[0123]一旦已进行这样一个或更多个初步测量,为了确定衬底12的形貌,使用第一衬底定位装置PW1来移动衬底12,使得衬底12上的接收辐射束22的目标部位19改变。第一衬底定位装置PW1可操作以按与由第二衬底定位装置PW2所执行的衬底相对于投影系统PL的运动相似的方式来相对于形貌测量系统TMS移动所述衬底12。[0124]随着衬底12相对于图案形成装置20的图像33而线性地移动,光栅16处的所检测信号可被认为与所述衬底12的形貌和图案形成装置20的图像33的卷积是成正比的。当在图案形成装置图像33下方扫描衬底12时,衬底高度的变化引起光栅16处的辐射的相位分布的变化。光栅16将相位分布的这些变化转换成检测器18处的辐射强度的变化。衬底12的高度变化造成光栅16处的图案形成装置20的图像移动相对于光栅16。光栅16处的所述图像的这种移动由光栅16转换成通过两个检测元件18a、18b所检测到的强度不平衡性。结果,从检测器18输出的信号81代表衬底12的高度。[0125]输出信号81由处理器PR接收。从检测器18输出的信号可以由处理器PR进行分析,以确足衬底12的咼度。所述处理器PR可以用于产生衬底12的形貌图。所述处理器PR可包括存储器,且可操作以储存与整个衬底W的形貌相关的信息。衬底W的表面的形貌可被称作高度图。[0126]在衬底w在图1A的右侧)的曝光期间,需要将衬底糾呆持在投影系统?1的焦平面中。为了实现这种情形,可在z方向上移动所述衬底台WT2,所述衬底台WT2的所述移动是依赖于衬底W的表面的形貌如先前由形貌测量系统TMS所确定而确定的。[0127]处理器PR可被认为是数字信号处理系统。所述处理器pr可以包括例如一个或更多个微处理器,或者一个或更多个现场可编程门阵列FPGA等。所述处理器PR可以是专用于形貌测量系统TMS的系统。替代地,所述处理器PR可以是也处理来自图1A的光刻设备中的其它功能模块的数字信号的更加通用的系统。例如,如图1A所示,处理器PR也可处理来自对准系统AS的信号S2。[0128]除了来自对准系统AS和形貌测量系统TMS的数据以外,处理器PR也从第一衬底定位装置PW1接收衬底台WT1的位置信息参见图丨八中的信号33。由于衬底通常经由夹持件)固定至衬底台WT1,故可将与衬底台WT1相关的位置信息视为与衬底W相关的位置信息。[0129]可设置多个形貌测量系统TMS。即,可产生多个辐射束4,每个辐射束由不同光学装置6导向和或聚焦至不同图案形成装置20上以便产生多个测量辐射束22。所有第一图案形成装置20可设置在单个掩模版上。每个这种测量辐射束22则可传递通过不同照射光学装置10且照射衬底I2上的多个目标部位。对于使用多个形貌测量系统TMS的这些实施例,多个辐射源可用以产生多个辐射束4,每个辐射源能够操作以产生用于不同形貌测量系统TMS的辐射束4。替代地,单个辐射源可与被布置成将由辐射源所产生的辐射的一部分分配至形貌测量系统TMS中的每个形貌测量系统的光学装置相结合而使用。[0130]以此方式,可由辐射束照射所述衬底W的多个目标部位或“光点”)。例如,可照射所述衬底W上的十至一百个数量级的光点。该多个光点可在衬底W的非扫描方向上延伸,且可例如跨越所述衬底的单一目标部分C参见图1B。[0131]多个检测器18和多个光栅16可用以检测所述测量辐射束且提供输出信号31。处理器PR可接收所述输出信号S1且将这些输出信号转换成衬底高度测量值。处理器PR可使用所述测量值产生用于衬底12的高度图。以这种方式使用多个测量辐射束是有利的,这是因为其允许更快速地产生用于衬底12的高度图(其允许以较少的行程扫描所述衬底)。多个形貌测量系统TMS可被称作形貌测量设备。[0132]在一个实施例中,可被设置成与框架MF分离的单个辐射源照射光纤阵列。每个光纤将由辐射源输出的辐射的一部分透射至光学装置6中的一个或更多个。在一个实施例中,针对每个光学装置6设置多个这种光纤。理想地,光纤被安置在照射光学装置10的焦平面外即,光纤并未与第一光栅20安置在同一平面中)使得它们不影响形貌测量。[0133]辐射束4可大体上均匀地且以大体上均匀的角度分布来照射所述图案形成装置20。为了实现这种情形,可被设置成与框架MF分离的辐射源2可大体上均匀地且以大体上均匀的角度分布来照射光纤的阵列。[0134]通常,衬底将会设置有多个图案化的层,以便例如产生多层1C。每一层都是通过投影图案化的层来曝光衬底上的抗蚀剂,然后处理该衬底而形成的。所述处理可以例如包括蚀刻抗蚀剂,将材料沉积到通过蚀刻形成的凹槽中,然后对衬底进行抛光。这在衬底上形成了图案化的材料的层。层的厚度将会依赖于所执行的处理,并且会从层至层发生变化。衬底上的一组图案化的层可以称作叠层。光刻设备应该能够将图案投影到衬底上,该衬底具有构造变化多样的叠层。所述形貌测量系统TMS能够测量衬底形貌,以实现期望的叠层构造。为了清楚起见,衬底形貌测量系统TMS也可以称作水平感测系统或水平传感器。如已知的,使用水平传感器来制作衬底的高度图。[0135]可选择任何合适入射角0。测量束22穿透入衬底叠层可能引起可将误差引入高度测量值中的干涉效应。将发生的穿透的程度依赖于测量束的波长、偏振和入射角而出现。通常,测量束22的穿透深度随着波长的减小而减小,并且随着入射角e的增大而减小。[0136]增大入射角会减小测量束22进入衬底12的子结构中的穿透深度。这意味着发生较少的叠层反射,并且避免或减少了它们在被反射的测量束中的相关联的干涉作用。通过避免或减少由不同的叠层反射引起的干涉作用,减少了形貌测量的依赖于过程的误差,并提高了形貌测量系统的准确性。然而,增加入射角9也会造成第一光栅图像33的尺寸增加,这可减小形貌测量系统TMS的分辨率。形成于衬底12上的第一光栅图像33的尺寸可例如由辐射束22的直径d对入射角9的余弦的比率(S卩,dcos0给出。在一些实施例中,用于形貌测量系统TMS中的入射角0可处于7〇°至85°的范围内。应注意,为了便于图示,图2仅是示意图,并未示出在70°至85°的范围内的入射角0,而是示出了较小的角度。[0137]宽带辐射可以用于提高形貌测量的准确性,这是因为由来自叠层的不同层的反射所引起的干涉作用可以在一辐射波长范围上近似地进行平均。此外,相比于使用可见光和或红外辐射,紫外辐射可提供形貌测量系统TMS的更佳性能(S卩,在衬底12的所测量高度与真实高度之间存在较小偏差)。因此,可期望提供用于形貌测量系统TMS的辐射源2,所述辐射源2提供例如在200纳米至425纳米的范围内的宽带紫外辐射。[0138]也期望使这种辐射源的强度足够低从而使得其不曝光衬底上的抗蚀剂。为了实现这种情形,可期望提供其输出可易于受控制的辐射源2。[0139]实施例涉及其中辐射源2包括能够操作以输出紫外辐射的发光二极管的形貌测量系统TMS。具体地,实施例涉及其中辐射源2包括多个发光二极管所述多个发光二极管中的至少两个具有不同的波长光谱的形貌测量系统TMS。[0140]这种布置允许使宽带紫外源由发光二极管形成。有利地,这种布置允许形成其中可控制波长光谱且因此可根据要求来修整所述波长光谱的宽带紫外源2。例如,可通过改变多个发光二极管的相对强度来调整所述辐射源2的光谱。[0141]紫外发光二极管是相对新的固态技术,且近年来已在此领域中取得显著的进展,特别是关于它们的输出功率(即,发光二极管外部效率)。现在可得到具有可定制波长的紫外发光二极管,其能够即刻被接通或断开且是抗震的。[0142]图3是根据一实施例的用于形貌测量系统TMS的辐射源100的示意图。例如,辐射源100可对应于图2所示的辐射源2。[0143]辐射源100包括多个发光二极管101至1〇5。发光二极管101至1〇5中的每个能够操作以产生包括紫外辐射的辐射束出至氏。多个发光二极管101至105中的每个具有不同的波长光谱。即,辐射束出至出中的每个辐射束的中心波长不同。在一个特定实施例中,辐射束出具有2的纳米的波长、辐射束出具有2S0纳米的波长、辐射束B3具有300纳米的波长、辐射束B4具有320纳米的波长,且辐射束Bs具有340纳米的波长。尽管图3所示的特定实施例包括五个发光二极管,但应了解,其他实施例可包括少于或多于五个发光二极管。可选地,可使用具有515纳米、612纳米、782纳米和或880纳米的波长的发光二极管。[0144]此外,尽管在图3所示出的特定实施例中,多个发光二极管101至1〇5中的每个具有不同波长光谱,但在某些替代实施例中,发光二极管中的至少一些可具有相同或相似的波长光谱。例如,在一替代实施例中,图3所示的发光二极管101至105中的每个可由一对相同的发光一极管替换(g卩,使得存在十个发光二极管)。这可允许增加辐射源1〇〇的强度。另外或替代地,其可允许在较低操作电流情况下操作发光二极管中的每个,这可增加辐射源1〇〇中的每个发光二极管的寿命。[0145]辐射源100还包括控制器110。控制器110能够操作以产生多个控制信号^丨至丨^,所述多个控制信号中的每个控制信号分别由多个发光二极管101至105中的不同的发光二极管接收。控制信号111至115充当用于发光二极管101至105的驱动信号。由发光二极管101至105所输出的辐射束至出中的每个的强度或功率依赖于由控制器110产生的相应的控制信号111至115。[0146]在一个实施例中,控制信号111至115可用来将对应的发光二极管101至1〇5在“接通”状态与“断开”状态之间切换,在接通状态中,例如所述发光二极管101至105发射辐射束Bi至Bs;在断开状态中,例如所述发光二极管川丨至丨的不产生辐射束。[0147]另外或替代地,控制信号111至115可通过一取值范围来控制发光二极管1〇1至1〇5中的每个的输出强度或功率。例如,通过合适选择控制信号111至115,控制器11〇可操作以通过连续的值范围将辐射束匕至出中的每个的输出强度或功率进行控制。如由本领域技术人员将了解的,对发光二极管101至105的输出强度或功率的这种连续控制可以实现为多种不同方式。[0148]例如,可依赖于控制信号111至115而改变传递通过发光二极管101至105中的每个的电流。[0149]替代地,发光二极管101至1〇5中的每个可以是脉冲调制的,从而使得其输出辐射束出至包括多个脉冲。对于这种实施例,可通过脉宽调制实现对辐射束出至出中的每个的平均输出强度或功率的控制。例如,发光二极管101至105中的每个可被以一频率进行脉冲调制,所述频率足够高以使得衬底12上的每个点接收大量脉冲例如多于100个或多于1000个)。通过改变使发光二极管1〇1至105中的每个被脉冲调制的占空比,发光二极管1〇1至1〇5中的每个的强度或功率在合适时间段上被平均化或被积分时可受控制。[0150]替代地,发光二极管101至105中的每个可包括可变衰减器。对于这些实施例,由控制器110输出的控制信号101至115可确定发光二极管101至105中的每个的衰减程度。[0151]替代地,对于包括针对每个独立的波长分量的多个相同的发光二极管的实施例,可通过改变正在操作的所述波长的发光二极管的数目来控制针对每个独立的波长分量的输出。[0152]控制器110可包括例如一个或更多个微处理器或一个或更多个现场可编程门阵列FPGA,等等。控制器110可包括存储器。控制器i1〇可以是专用于辐射源110的系统。替代地,控制器110可以是也充当图1A的光刻设备中的其他功能模块的更通用的系统。在一个实施例中,控制器110和处理器PR由单处理器或控制器提供。[0153]辐射源100还包括组合光学装置12〇。组合光学装置120被布置成接收由多个发光二极营101至105中的每个输出的辐射束出至。组合光学装置120能够操作以组合多个辐射束出至35中的每个且输出单一辐射束121。[0154]组合光学装置120可包括一个或更多个二向色镜,所述一个或更多个二向色镜中的每个被布置成接收两个输入辐射束,且输出包括所述两个输入辐射束中的每个输入辐射束的一部分的至少一个辐射束。图4示出这种布置。[0155]图4示出被布置成接收两个输入辐射束210、220的二向色镜200。二向色镜200也被称作分束器包括在相交平面203处会合的两个部分201、202。输入辐射束210、220中的每个入射到相交平面203上。输入辐射束21〇、22〇中的每个输入辐射束的第一部分211、221从相交平面203反射且射出二向色镜2〇0。输入辐射束210、220中的每个输入辐射束的第二部分21L222传递通过相交平面203且射出二向色镜200。第一输入辐射束210的第一部分211和第二辐射束220的第二部分222形成第一输出辐射束230。类似地,第一辐射束210的第二部分212和第二辐射束220的第一部分221形成第二输出辐射束240。[0156]如图4所示的这种二向色镜200的特性可相对于两个输入辐射束210、220的波长而被调谐以便至少部分地抑制输出辐射束230、240之一。这种布置将会产生包括两个输入辐射束的组合的一个主输出辐射束。例如,涂层设置在相交平面203处。此涂层的材料和厚度被选择成使得例如其具有针对具有第一输入辐射束210的波长的辐射的高的透射率和针对具有第二输入辐射束22〇的波长的辐射的高的反射率。利用这种布置,来自第一输入辐射束210和第二输入辐射束220的大部分辐射促成了第二输出辐射束240,且抑制第一输出辐射束230。替代地,相交平面203处的涂层的属性可被选择成使得抑制了第二输出辐射束240且来自第一输入辐射束210和第二输入辐射束220的大部分辐射促成了第一输出辐射束230。应了解,在替代实施例中,用于图4所示二向色镜200的立方体布置可利用具有合适的光学属性的板来替换。[0157]组合光学装置120可操作以产生提供在图案形成装置20上的波长光谱的大体上均匀的空间分布的组合辐射束121。即,图案形成装置20上的每个不同空间部位或针对包括多于一个形貌测量系统TMS的实施例的每个第一光栅2〇接收具有基本上相同的波长光谱的辐射。[0158]可选地,形貌测量系统TMS还可包括光谱检测器,如现在所描述。一般而言,光谱检测器可操作以确定形貌测量系统TMS内的辐射束的波长光谱的特性。在图3所示实施例中,辐射源100还包括:分束器130、分离光学装置140和多个光电二极管151至155。[0159]分束器13〇可被布置成将辐射束121的一部分转向至分离光学装置140。辐射束121的剩余部分可由分束器130透射且可形成辐射源100的输出辐射束B〇ut。例如,在一个实施例中,辐射束121中所包含的99%的辐射可作为输出辐射束BQUt而输出,且1%的辐射束丨21可由分束器130转向至分离光学装置140。[0160]分离光学装置140可被布置成将其接收的辐射束121的部分122分离成多个成分光谱分量。例如,分离光学装置140可包括诸如棱镜等色散光学元件。具体地,分离光学装置140可操作以在空间上分离源于不同发光二极管1〇1至105中的每个发光二极管的辐射束122中的分量中的每个分量。分离光学装置140能够操作以输出多个输出辐射束141至145,所述福射束141至145中的每个分别对应于源于发光二极管101至105的一个不同的发光二极管的分量。L〇161」光电二极管151至1S5中的每个被布置成用以接收由分离光学装置140所输出的辐射束141至145中的一个不同的辐射束。光电二极管151至155中的每个可被认为是能够操作以确定由分离光学装置140所输出的多个辐射束141至145中之一的功率或强度的检测元件。光电二极管151至I55中的每个能够操作以输出指示其从分离光学装置14〇接收的辐射束141至145的强度的信号161至165。所述输出信号161至1阳中的每个输出信号由控制器110接收。[0162]分束器130、分离光学装置140、光电二极管151至155可被认为形成能够操作以确定辐射束Bcnrt的波长光谱的特性的光谱检测器17〇。在图3所图示的示例实施例中,光谱检测器17〇可被认为是辐射源100的一部分。在替代实施例中,光谱检测器的分束器可被安置于形貌测量系统TMS中的任何合适点处,例如在介于辐射源2与检测器18之间的任何位置。对于这些替代实施例,光谱检测器可被认为是与辐射源1〇〇分离的。例如,在一个替代实施例中,分束器可被安置于光栅16与检测器18之间。[0163]在一替代实施例中,可从光谱检测器省略所述分束器和或所述分离光学装置,如在此所描述的。[0164]对于其中光谱检测器不包括分离光学装置的实施例,控制器110可操作以控制多个发光二极管101至105的输出(使用合适的控制信号111至115,使得所述发光二极管1〇1至105中的每个依次被接通。例如,发光二极管101至1〇5中的每个可以被脉冲调制以使得发光二极管101至105中的每个与其他发光二极管1〇1至1〇5异相。利用这种布置,单一检测元件可操作以继而确定源于不同发光二极管101至105中的每个发光二极管的光谱分量。[0165]此外,在一个实施例中,光谱检测器不包括分束器。更确切地说,光谱检测器使用形貌测量系统TMS的检测器I8的检测元件1化、18b中的一个或更多个。再者,对于这种实施例,控制器110可操作以控制多个发光二极管101至105的输出(使用合适的控制信号111至II5,使得所述发光二极管101至1〇5中的每个继而被接通。例如,发光二极管101至105中的每个可以被脉冲调制,使得发光二极管101至1〇5中的每个与其他发光二极管101至105异相。利用这种布置,形貌测量系统TMS的检测器18的检测元件18a、18b中的一个或更多个检测元件可操作以继而确定源于不同发光二极管101至105中的每个发光二极管的光谱分量。光谱检测器的这种实施例可以是有益的,因为其无需分束器或分离光学装置且因此是特别简单的设计。[0166]由形貌测量系统TMS中的衬底12进行的根据波长而变化的辐射的透射依赖于衬底12的表面的形状。因此,对于其中在衬底12的下游确定所述辐射束的波长光谱的特性的实施例,理想地使用具有基本上恒定或已知的表面的参考衬底来进行这种测量。在辐射束的波长光谱的特性的这种测量期间,参考衬底可保持静止。例如,恒定或已知的参考衬底可用于其中光谱检测器使用形貌测量系统TMS的检测器18的检测元件18a、18b中的一个或更多个的实施例,或用于其中光谱检测器的分束器安置介于光栅16与检测器18之间的实施例。[0167]光谱检测器可操作以确定由辐射源100输出的辐射束Bc^或形貌测量系统TMS中的任何点处的辐射束)的波长光谱。光谱检测器可用作用以稳定由辐射源100输出的辐射束3。此的波长光谱的反馈控制回路的一部分(或替代地,处于形貌测量系统TMS中的另一点处。[0168]所描述的辐射源100具有多种优点,如当前所描述的。[0169]辐射源100允许调整用于形貌测量系统TMS中的辐射源2的波长光谱。通过改变被发送至发光二极管101至105的控制信号111至II5,控制器110能够操作以控制由辐射源100输出的辐射束B〇ut的波长光谱。具体地,这种控制可在线地S卩,在光刻设备的操作期间实时地实现。[0170]此外,由光谱检测器例如光谱检测器17〇和控制器110所形成的反馈回路可被用来确定发光二极管101至105的光谱输出的任何改变或差和或介于a发光二极管101至105与⑹光谱检测器的分束器例如分束器130或光谱检测器的检测器例如检测器18之间的光学装置的光谱透射的任何改变或差。控制器110可操作以依赖于由控制器110从光谱检测器接收的信号例如,来自光电二极管151至155的信号161至165而控制被发送至发光二极管101至105的控制信号111至115。例如,控制器110可操作以控制被发送至发光二极管101至105的控制信号111至115以便至少部分地校正由辐射源100所输出的辐射束BQUt的光谱的任何己确定的改变或差。以此方式,可稳定由辐射源100输出的辐射束B〇ut的波长光谱。另外或替代地,对于其中检测器18形成光谱检测器的一部分的实施例,可测量和或校正在辐射源2与检测器18之间的光学路径中的光谱改变。[0171]如以上所描述,在一些实施例中,控制器110可操作以控制多个发光二极管101至105的输出(使用合适控制信号111至115,使得发光二极管101至105中的每个是脉冲调制的。由于紫外发光二极管能够即刻被接通或断开,故它们可被极高频率的脉冲调制。具体地,发光二极管101至105中的每个可以被脉冲调制以使得发光二极管101至105中的每个与其他发光二极管101至105异相。以此方式,辐射源100的输出可产生多个脉冲,其中脉冲通过多个不同波长循环。因此,这种高频波长切换提供输出辐射束Bw的波长调制。[0172]可由光谱检测器利用这种频率波长切换以避免使用如上文所详细解释的分离光学装置。可使用紫外发光二极管实现的高频波长切换在使用形貌测量系统TMS进行的衬底12的形貌的测量期间也可以是有利的,如在此所描述的。[0173]期望地,用于激励发光二极管101至105中的每个发光二极管的脉冲的频率足够高,使得在形貌测量系统TMS的操作期间,目标部位19在每个被脉冲调制的发光二极管101至105的时段期间移动的量可忽略。如果检测器18能够在时序上分辨每个脉冲,则处理器PR可操作以同时地(即,在形貌测量系统TMS下方的衬底12的单次扫描期间)确定多个高度图,所述多个高度图中的每个是使用不同波长即,来自不同发光二极管而确定的。因此,利用这种布置,形貌测量系统TMS允许使用多个波长来获取多个衬底高度图,而不损失光刻设备的生产率。所述多个高度图可被组合以提高测量的准确度。替代地,可选择使用最优最佳执行波长而确定的高度图。[0174]控制器110的存储器可操作以储存与提供用于辐射束B-的默认或最佳波长光谱的信号相关的信息。[0175]所述形貌测量系统TMS可具有一个或更多个优点。所述TMS使用紫外辐射,所述紫外辐射已被发现相比于可见光或红外辐射提供了形貌测量系统TMS的更好的准确度。此外,紫外发光二极管具有优于诸如气体放电灯例如氙等离子体源)的其他已知紫外辐射源的一个或更多个优点。具体地,紫外发光二极管产生较少热量且因此是更高效的。此外,紫外发光二极管相比于氙等离子体源其需要例如使用氮进行净化可产生明显更少的臭氧。例如,与氙等离子体源形成对比,至少一些紫外发光二极管可不产生任何臭氧。[0176]此外,可易于接通和断开紫外发光二极管,而不显著影响其寿命,这可避免复杂的遮光片布置的需要。另外,可在高频下切换紫外发光二极管,使得可调制辐射束的波长。此夕卜,发光二极管特别是紫外发光二极管相比于更复杂的气体放电源是更广泛可用的且更便宜的。[0177]在一实施例中,由于形貌测量系统TMS使用例如具有约225纳米至4〇〇纳米的光谱范围的紫外辐射相对于可见光或红外辐射),故可存在所述衬底12上的抗蚀剂的预先曝光的风险。这是因为形貌测量系统TMS的光谱强度分布与供深紫外例如在大约丨93纳米的曝光波长下操作或极紫外例如在大约13.5纳米的曝光波长下操作光刻设备使用的许多抗蚀剂的灵敏度重叠。[0178]如上文所解释,为了减少抗蚀剂的这种预先曝光的风险,可期望提供其输出可相对易于受控制的辐射源100。[0179]在一实施例中,辐射源可具有多个不同操作模式,辐射束Bout的光谱强度分布依赖于选定的操作模式。控制器110可操作以针对多个操作模式中的每个产生多个控制信号111至115的不同集合。也就是说,在每个不同操作模式中,产生控制信号in至115的不同集合。即,针对每对的两个操作模式,由多个发光二极管101至1〇5之一所接收的多个控制信号111至115中的至少一个控制信号是不同的。以此方式,辐射束8。扣的光谱强度分布依赖于控制器110的选定操作模式。[0180]在一实施例中,辐射源100可具有两个不同操作模式:第一操作模式和第二操作模式。[0181]当在第一操作模式中时,辐射源100可提供例如在200纳米至425纳米的范围内的宽带紫外辐射,其可用于确定衬底12的形貌例如,高度图)。如以上所描述,这种宽带紫外光谱强度分布可引起形貌测量系统TMS的性能改进g卩,衬底12的形貌的更准确的确定)。因此,当确定衬底12的形貌时(g卩,当测量衬底I2的高度图时),可使用第一操作模式。[0182]当在第二操作模式中时,辐射源100可提供相对于第一操作模式具有减少的光谱范围的紫外辐射。例如,当辐射源100处于第二操作模式中时所发射的辐射的光谱范围可以是当辐射源1〇〇处于第二操作模式中时所发射的辐射的光谱范围的子范围。具体地,在第二操作模式中,辐射源100可提供其中减少了在光谱的较短波长部分中所发射的辐射的强度的紫外辐射。例如,在第二操作模式中,辐射源100可提供仅在325纳米至425纳米的范围内的紫外辐射。当辐射源100处于第二操作模式中时所发射的辐射的光谱强度分布可相比于当辐射源1〇〇处于第一操作模式中时所发射的辐射的光谱强度分布在所述光谱强度分布的较短波长部分中有所减少。通常,用于衬底12上的抗蚀剂对辐射源1〇〇的较短波长子范围中的辐射比对辐射源100的较长波长子范围中的辐射更敏感。因此,通过减少在光谱的较短波长部分中所发射的辐射的强度,可减少预先曝光所述抗蚀剂的风险。因此,可在如下情形中使用第二操作模式:其中可容许所述形貌测量系统TMS的总体性能的减少以便减小预先曝光所述抗蚀剂的风险。例如,可例如在晶片捕捉期间在确定衬底12的形貌之前使用形貌测量系统TMS进行一个或更多个初步测量时使用第二操作模式。[0183]在此参考图5、图6A和图6B描述了其中控制器11〇具有两个操作模式的示例实施例。[0184]如上文己经解释的,尽管图3所示的辐射源100的特定实施例包括五个发光二极管,但应了解,其他实施例可包括少于或多于五个发光二极管。图5是用于形貌测量系统TMS的辐射源100的示意图,所述辐射源100通常具有图3所示的和上文所描述的辐射源的形式。图5所示的辐射源100与图3所示的辐射源100之间的差异在于,图5所示的辐射源丨00包括八个发光二极管101至108;控制器110可操作以产生八个控制信号丨丨丨至丨丨心所述控制信号中的每个控制信号分别由八个发光二极管101至1〇8中的一个不同的发光二极管接收;分离光学装置140被布置成将其从分束器130所接收的辐射束121的部分122分离成八个输出辐射束141至148,所述输出辐射束中的每个是源于发光二极管1〇1至1〇8中的一个不同的发光二极管的光谱分量;且图5所示的辐射源100包括八个光电二极管151至158,每个光电二极管被布置成用以接收由分离光学装置140输出的辐射束141至148中的一个不同的辐射束且能够操作以将指示其从分离光学装置140所接收的辐射束141至148的强度的信号161至168输出至控制器110。[0185]控制器110具有两个操作模式。图6A示出在第一操作模式中的辐射源100的光谱强度分布3〇0实线)。图6A也示出在第一操作模式中的用于辐射源100的八个发光二极管1〇1至108中的每个发光二极管的光谱强度分布3〇1至3〇8。图6B示出在第二操作模式中的辐射源100的光谱强度分布310实线)。图6B也示出用于在第二操作模式中促成辐射源100的光谱强度分布310的四个发光二极管105至108的光谱强度分布305至308。[0186]在图6A和图仙所示实施例中,发光二极管101至1〇8中的每个发光二极管的光谱强度分布是类高斯分布且辐射束出至出的中心波长分别是近似:265纳米、280纳米、305纳米、320纳米、340纳米、365纳米、385纳米和405纳米。也可使用具有类高斯光谱强度分布或不同分布的中心波长例如为约515纳米、约612纳米、约782纳米或约880纳米的发光二极管。也可使用具有其他中心波长的发光二极管。[0187]在第一操作模式中,控制器110能够操作以产生多个控制信号in至118的第一集合,使得辐射束Bcmt具有图6A所示的光谱强度分布300。为了实现这种情形,控制器11〇能够操作以产生多个控制信号111至118的第一集合,使得发光二极管101至1〇8中的每个发射福射。如从图6A可看到,尽管由发光二极管101至10S中的每个所发射的辐射的强度为同一数量级,但在发光二极管101至108的峰值强度方面存在某种变化。光谱强度分布3〇〇是例如在近似225纳米至4¾纳米的范围内的宽带紫外辐射。这种宽带紫外光谱强度分布可引起形貌测量系统TMS的性能改进(g卩,衬底12的形貌的更准确确定)。具体地,光谱范围的较短波长部分引起形貌测量系统TMS的性能的改进。[0188]在第二操作模式中,控制器110能够操作以产生多个控制信号hi至i1S的第二集合,使得辐射束Bout具有图部所示的光谱强度分布310。当辐射源100处于第二操作模式中时所发射的辐射的光谱强度分布310,相比于当辐射源100处于第一操作模式中时所发射的辖射的光谱强度分布300,在所述光谱强度分布300的较短波长部分中被削减。为了实现这种情形,控制器110能够操作以产生多个控制信号111至118的第一集合,使得具有最低中心波长的四个发光二极管101至104不发射辐射且具有最高中心波长的四个发光二极管105至108各自发射辐射。如从图6B可看到,这种情形导致相对于第一操作模式的光谱强度分布300的被截断的光谱强度分布310,其中所述光谱的较低部分实际上被截止。因此,当在第二操作模式中时,辐射源100提供相对于第一操作模式具有减少的光谱范围的紫外辐射。当福射源100处于第二操作模式中时所发射的辐射的光谱范围是当辐射源100处于第二操作模式中时所发射的辐射的光谱范围的子范围。具体地,在第二操作模式中,辐射源100提供其中减少了在光谱范围的较短波长部分中发射的辐射的强度的紫外辐射。如上文所解释,通过减少在光谱范围的较短波长部分中所发射的辐射的强度,可减少预先曝光所述抗蚀剂的风险D[0189]图7示出用于深紫外例如在大约193纳米的曝光波长下操作和极紫外例如在大约13.5纳米的曝光波长下操作光刻设备的一些抗蚀剂的根据波长而变化的吸收系数。如从图7可看到,对于全部这些抗蚀剂,吸收系数随着增加波长而减低。此外,对于所有这些抗蚀剂,吸收系数针对高于大约290纳米的波长下降至可忽略的程度。由于在第二操作模式参见图6B中的辐射源100的光谱强度分布310在大约310纳米的波长的情况下降至零,则当辐射源100正在第二模式中操作时所述抗蚀剂的预先曝光的风险在所述辐射源100正在所述第二操作模式中操作时被显著减少。[0190]虽然在本文中可以对光刻设备的情况下的实施例做出了具体参考,但实施例可以用在其它设备中。实施例可以形成掩模检查设备、量测设备、或者测量或处理诸如晶片或其它衬底或掩模或其它图案形成装置等物体的任何设备的一部分。这些设备通常可以称为光刻工具。这种光刻工具可以使用真空条件或周围环境非真空条件。[0191]照射光学装置、光学装置和检测光学装置可以包括各种类型的光学部件,例如折射型、反射型、反射折射型光学部件,用以对辐射束进行引导、成形或控制。[0192]术语“EUV辖射”可以被认为包括波长在4nm至20nm的范围内(例如在13nm至14nm范围内)的电磁辖射。EUV福射可以具有小于1Onm的波长,例如在4nm至1Onm的范围内,例如6.7nm或6.8nm〇[0193]尽管在本文中对光刻设备用于制造1C做出了具体参考,但应该理解的是,这里所述的光刻设备可以具有其它应用。可能的其它应用包括制造集成光学系统、磁畴存储器的弓丨导和检测图案、平板显示器、液晶显示器LCD、薄膜磁头等。[0194]实施例可以被以硬件、固件、软件或它们的任何组合来实施。处理器PR可以连接到存储处理器可读指令的存储器,所述处理器可读指令在被执行时会将解码序列施加到从检测器18输出的信号。实施例还可以被实施为存储在计算机可读介质上的指令,该指令可以由一个或更多个处理器读取和执行。计算机可读介质可以包括用于以机器例如计算装置)可读的形式存储或传输信息的任何机制。例如,计算机可读介质可以包括:只读存储器ROM;随机存取存储器RAM;磁盘存储介质;光学存储介质;闪存装置;电学、光学、声学或其它形式的传播信号例如载波、红外信号、数字信号等等。此外,固件、软件、例程、指令在本文中可以被描述为执行某些动作。然而,应该理解的是,这样的描述仅是为了方便,并且这样的动作事实上由计算装置、处理器、控制器或执行固件、软件、例程、指令等的其它装置所导致。[0195]虽然以上己经描述了具体实施例,但应该理解的是,本发明可以以与上述方式不同的方式来实施。以上的描述意图是说明性的,而不是限制性的。因此,本领域的技术人员将明白在不背离下面阐述的权利要求书的范围的情况下,可以对所描述的发明进行修改。

权利要求:1.一种用于确定衬底的形貌的测量系统,所述系统包括:辐射源,配置成产生辐射束,所述辐射源包括用以提供辐射的发光二极管;第一图案形成装置,配置成图案化所述辐射束;光学装置,配置成在所述衬底上的目标部位处形成所述第一图案形成装置的图像;移动机构,能够操作以将所述衬底相对于所述第一图案形成装置的所述图像而移动,使得所述目标部位相对于所述衬底而移动;检测光学装置,配置成接收从所述衬底的所述目标部位反射的辐射且在光栅处形成第一图像的像;和检测器,配置成接收透射通过所述光栅的辐射且产生输出信号。2.根据权利要求1所述的测量系统,其中所述辐射源包括多个发光二极管,所述多个发光二极管中的至少两个具有不同的波长光谱。3.根据权利要求1或2所述的测量系统,其中所述辐射主要由紫外辐射构成。4.根据权利要求1、2或3所述的测量系统,其中所述辐射主要由可见光构成。5.根据前述权利要求中任一项所述的测量系统,其中所述发光二极管的中心波长为由约2的纳米、约28〇纳米、约300纳米、约340纳米、约4〇5纳米、约470纳米、约515纳米、约612纳米、约782纳米和约880纳米组成的组中的一者。6.根据前述权利要求中任一项所述的测量系统,其中所述发光二极管是紫色发光二极管或蓝色发光二极管。7.根据前述权利要求中任一项所述的测量系统,其中所述辐射包括紫外福射、可见光、或紫外辐射和可见光二者。8.根据权利要求2所述的测量系统,其中所述辐射源还包括调整机构,所述调整机构被配置成控制所述多个发光二极管中的一个或更多个发光二极管的相对强度。9.根据权利要求2至8中任一项所述的测量系统,还包括控制器,所述控制器被配置成产生多个控制信号,所述多个控制信号中的每个控制信号由所述多个发光二极管中的一个不同的发光二极管接收,每个发光二极管的输出强度或功率依赖于其从所述控制器接收的所述控制信号,其中所述控制器能够操作以控制所述多个发光二极管的输出,使得所述多个发光二极管中的每个发光二极管是脉冲调制的。10.根据权利要求9所述的测量系统,其中所述多个发光二极管中的每个发光二极管是脉冲调制的,使得来自所述多个发光二极管中的每个发光二极管的脉冲与具有不同的波长光谱的发光二极管的脉冲异相。11.根据权利要求9或10所述的测量系统,其中所述检测器能够在时序上分辨每个脉冲。12.根据权利要求2至11中任一项所述的测量系统,其中所述辐射源还包括组合光学装置,所述组合光学装置布置成从所述多个发光二极管中的每个发光二极管接收辐射且将辐射组合,使得来自所述多个发光二极管中的每个发光二极管的辐射在空间上重叠以形成辐射束。13.根据权利要求I2所述的测量系统,其中所述组合光学装置包括一个或更多个二向色镜,所述一个或更多个二向色镜被布置成接收两个输入辐射束且输出包括所述两个输入辐射束中的每个输入辐射束的一部分的至少一个辐射束。M.根据則述权利女求中任一项所述的测S系统,其中所述辐射束包括在200纳米至425纳米的范围内的紫外辐射。I5•—种用于根据权利要求1至14中任一项所述的测量系统中的辐射源,所述辐射源包括:多个发光二极管,所述多个发光二极管中的每个发光二极管具有不同的波长光谱;组合光学装置,布置成从所述多个发光二极管中的每个发光二极管接收辐射且将辐射组合,使得来自所述多个发光二极管中的每个发光二极管的辐射在空间上重叠以形成辐射束;和、控制―,配置成产生多个控制信号,所述多个控制信号中的每个控制信号由所述多个发光二极管中的一个不同的发光二极管接收,每个发光二极管的输出强度或功率依赖于其从控制器接收的控制信号。•—种光刻设备,包括:照射系统,配置成调节辐射束;支撑件,构造成支撑第二图案形成装置,所述图案形成装置能够在所述辐射束的横截面中向所述輪射束赋予图案以形成图案化的福射束;衬底台,构造成保持衬底;投影系统,配置成将所述图案化的辐射束投影至所述衬底的目标部分上;和根据权利要求1至25中任一项所述的测量系统或根据权利要求26或权利要求27所述的测量设备。

百度查询: ASML荷兰有限公司 形貌测量系统

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。