买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】一种基于量子网络中分流流量传送的量子态隐形传送方法_苏州大学_201710964251.5 

申请/专利权人:苏州大学

申请日:2017-10-16

公开(公告)日:2020-10-13

公开(公告)号:CN107612689B

主分类号:H04L9/08(20060101)

分类号:H04L9/08(20060101);H04W40/22(20090101)

优先权:

专利状态码:有效-授权

法律状态:2020.10.13#授权;2018.02.13#实质审查的生效;2018.01.19#公开

摘要:本发明公开了一种基于量子网络中分流流量传送的量子态隐形传送方法,Alice发送未知多维多量子比特纠缠态给Bob,包括:Alice通过经典信道告知中心服务器该未知多维多量子比特纠缠态的qudit总数,中心服务器选择传送路径数和该路径上的中继节点数,使qudit并行且均衡地通过p条路径传输;在各中继节点的协助下,中心服务器协调,Alice和Bob之间建立起p条量子信道;Alice利用量子隐形传态原理将未知的多维多量子比特纠缠态通过不同的量子信道协调并行传送给Bob;Bob执行幺正操作恢复未知多维多量子比特纠缠态,完成传送过程。本发明实现了一个未知多维多量子比特纠缠态在多条传送路径上的并行传输,链路具有动态性和灵活性,能够满足构建复杂量子通信网络的要求。

主权项:1.一种基于量子网络中分流流量传送的量子态隐形传送方法,网络终端用户Alice发送未知多维多量子比特纠缠态给另一终端用户Bob,其特征在于,包括以下步骤:1终端用户Alice通过经典信道告知中心服务器该未知多维多量子比特纠缠态的qudit总数t,中心服务器选择合适的传送路径数p,然后计算出第i条路径传送的qudit数xi,和该路径上的中继节点数qi,使t个qudit同时并行且均衡地通过p条路径传输;在第i条传输路径上,终端用户Alice与第一个中继节点间、相邻中继节点间、最后一个中继节点与终端用户Bob之间均共享xi对广义Bell态作为量子信道;其中,1≤p≤t,i=1,2,…,p;2各中继节点通过对自己所拥有的quditBt和At+1执行广义Bell态测量,其中,t=1,2,…,qi;i=1,2,…,p,并将测量结果通过经典信道告知终端用户Bob,Bob选择相应的幺正操作与终端用户Alice建立起GBS态量子信道,即网络终端用户Alice所拥有的quditA1和另一终端用户Bob所拥有的qudit塌缩成一对纠缠高维量子比特,所处的量子态为GBS态;其中,所述广义Bell态测量所使用的广义bell态测量基具有如下形式:其中m,n=0,1,2,…,d-1,d为量子纠缠态的能级数,表示模d加;终端用户Bob根据各中继节点发来的测量结果mt,nt=0,1,2,…,d-1,选择相应的幺正变换有如下形式: 在终端用户Bob完成qi次幺正操作之后,网络终端用户Alice所拥有的quditA1和另一终端用户Bob所拥有的塌缩成一对纠缠高维量子比特,所处的量子态为GBS态有如下形式: 这时所有qudit组成的系统有如下形式: 3网络终端用户Alice对qudity与quditA1执行广义Bell态测量,有如下形式: 其中y=1,2,…,t,Alice将测量结果通过经典信道传送给另一终端用户Bob,Bob对qudit执行相应的酉操作Umn以在上恢复qudity的初始状态;4当p条路径都完成传送任务后,t个qudit状态都转移到了终端用户Bob所拥有的qudit上,这时,未知的多维多量子比特纠缠态隐形传递到了由t个qudit构成的量子系统上。

全文数据:一种基于量子网络中分流流量传送的量子态隐形传送方法技术领域[0001]本发明涉及通信网络及信息传播方法,具体涉及一种量子态隐形传送方法,尤其是一种基于分流流量的未知多维多量子比特纠缠态隐形传送网络构建方法。背景技术[0002]量子信息和量子计算是建立在量子力学原理、经典信息科学和经典计算科学基础上的新兴交叉学科。由于量子通信具有通信容量大、安全性高等方面的独特优势,近年来量子通信技术得到了快速发展,例如量子安全直接通信、量子对话、量子密钥分发等各分支协议不断获得更新完善。[0003]1984年,Bennett和Brassard两人利用单光子的四种偏振状态0°偏振,90°偏振,45°偏振和135°偏振编码二进制信息,从而提出第一个量子密钥分发协议quantumkeydistribution,QKD,即BB84协议(参见文献C.H.Bennett,G.BrassardQuantumcryptography:publickeydistributionandcointossing.In:ProceedingoftheIEEEInternationalConferenceonComputers,Systems,andSignalProcessing,1984。从此以后,实验上实现量子纠缠分发的距离不断被刷新,2016年,我国发射世界上首颗量子通信卫星墨子号,卫星完成纠缠光子的制备,然后分别发送到相距很远的两个地面观测站一个在青藏高原,一个在丽江),通过贝尔测试表明,两个光子仍然处于纠缠状态。所以,此次试验打破了以往所有的记录,完成了1200多公里量级的纠缠分发实验,这为构建全球量子通信网络奠定了基础。[0004]自Bennett等人在1993年提出量子隐形传态(参见C·H.Bennett,G·Brassard,etal.TeleportinganunknownquantumstateviadualclassicalandEinstein-Podolsky-Rosenchannels·Phys·Rev·Lett·,1993,7013以来,世界各地的研究人员进行了大量的理论和实验研究。不同于超密编码利用共享纠缠和量子信道传送经典信息,量子隐形传态是利用共享纠缠、局域操作和经典通信来传送量子态。在量子隐形传态中,不需要知道待传送量子比特的状态信息,但是Alice必须传送经典信息给Bob,Bob才能执行局域操作重现未知多维多量子比特纠缠态。利用量子隐形传态原理能够完成通信双方之间的信息传递和信息处理过程,量子通信网络的中继器要依靠量子隐形传态原理来构建。[0005]目前,在大部分有关量子信息和量子计算的方案中使用最多的是两能级量子系统,但是多能级量子系统也逐渐得到了深入研究。D.S.Simon等人提出了一个用于量子通信和信息处理的高维量子态物理实现方案,该方案利用高维量子态的算法编码技术能够设计一个高容量的量子通信和计算技术,并且方案能够进一步提高量子信息处理的速度、效率和网络容量。S.K.Goyal等人也在2014年基于线性光学的多维度量子态隐形传送方案。[0006]长距离量子通信的实现很大程度上取决于构建一个高安全性、高效率、高容量的量子网络。对于量子网络的构建以及网络中量子信息传递问题,已经提出了很多不同的实现方案。2016年,Li,ZZ.等人提出了一个基于多比特GHZ态的多用户量子无线通信网络构建方案,该方案构建了一个能够保证信息传送速度和稳定性的双层网络架构协议,方案表明该量子网络能够大大地减小计算的复杂度和资源的消耗。2017年,Xiong,PY.等人提出了一个基于部分纠缠GHZ态的量子无线多跳骨干网的路由转发协议方案,利用量子隐形传态原理,量子信息能够在相邻节点间隐形传送。该方案的优势在于路由选择过程和量子信道的构建是同时进行的,而且所述信息传送方法能够减少总的数据包和接口时延。[0007]对于多比特量子隐形传态的研究也涌现出了大量的优秀成果,2015年,Zhang,B.等人提出了一个基于四比特纠缠态的三比特量子态隐形传送方案,该方案指出可以利用四比特纠缠态,同时引入一个辅助比特和一个c-Not操作来实现三比特量子态的隐形传送。2012年,Zhou,P.等人提出了一个基于纯纠缠量子信道的多方可控的任意维度多量子态隐形传送方案,方案表明利用非最大纠缠态作为量子信道,结合多个控制方的合作能够实现任意维度的多比特量子态的隐形传送,并且接收方得到未知原始态的概率性保证了方案是最优的。[0008]然而,如何提高量子态隐形传送的信息传输效率和灵活性,仍然是本领域需要解决的问题。发明内容[0009]本发明的发明目的是提供一种基于量子网络中分流流量传送的量子态隐形传送方法,通过传输链路的动态选择,提高信息传输效率和灵活性。[0010]为达到上述发明目的,本发明采用的技术方案是:一种基于量子网络中分流流量传送的量子态隐形传送方法,网络终端用户Alice发送未知多维多量子比特纠缠态合另一终端用户Bob,包括以下步骤:[0011]1终端用户Alice通过经典信道告知中心服务器该未知多维多量子比特纠缠态的qudit总数t,中心服务器选择合适的传送路径数p,然后计算出第i条路径传送的qudit数Xi,和该路径上的中继节点数qi,使t个qudit同时并行且均衡地通过P条路径传输;在第i条传输路径上,终端用户Alice与第一个中继节点间、相邻中继节点间、最后一个中继节点与终端用户Bob之间均共享Xi对广义Bel1态作为量子信道;其中,KpSt,i=l,2,…,p;[0012]2各中继节点通过对自己所拥有的quditBt和At+1i行广义Bell态测量,其中,t=1,2,···,qi;i=l,2,···,p,并将测量结果通过经典信道告知终端用户Bob,Bob选择相应的幺正操作与终端用户Alice建立起GBS态量子信道,即网络终端用户Alice所拥有的qudit和另一终端用户Bob所拥有的qudit#塌缩成一对纠缠高维量子比特,所处的量子态为GBS态;[0013]3网络终端用户Alice对qudity与quditAi执行广义Bell态测量,y=1,2,…,t,并将测量结果通过经典信道传送给终端用户Bob,Bob执行相应的酉操作在qudit.^上恢复qudity的初始状态;[0014]4当p条路径都完成传送任务后,t个qudit状态都转移到了终端用户Bob所拥有的quditt上,这时,未知的多维多量子比特纠缠态.隐形传递到了由t个quditη构成的量子系统上。[0015]进一步的技术方案,步骤(1中,所述未知多维多量子比特纠缠态I夸》为t比特d能级量子态,表达为:[0019]上述技术方案中,中心服务器根据未知多维多量子比特纠缠态的qudit总数t选择P条传输路径的方法为:中心服务器按照均衡流量分配算法,使得P条路径传输的qudit数量满足均衡要求,所选P条路径上分别包含Q1个中继节点,路径选择成功之后,第i条路径传输Xi个qudit,[0020]所述广义Bell态的形式爻[0021]步骤(2中所述广义Bell态测量所使用的广义bell态测量基具有如下形式:其中111,11=0,1,2,〜,1-1,1为量子纠缠态的能级数,隶示模d加;[0022]终端用户Bob根据各中继节点发来的测量结果1,选择相应的么正变换有如下形式:[0024]在终端用户Bob完成取次幺正操作之后,网络终端用户Alice所拥有的qudit^和另一终端用户Bob所拥有的qudit塌缩成一对纠缠高维量子比特,所处的量子态为GBS态有如下形式:[0026]这时所有qudit组成的系统有如下形式:〇[0029]步骤⑶中,终端用户Alice对qudity与quditAl执行广义Bell态测量,有如下形式:[0032]Alice将测量结果通过经典信道传送给另一终端用户Bob,Bol^tqudit.应丨执行相应的酉操作Umn以在qudit!qp.上恢复qudity的初始状态。[0033]上述基于量子网络中分流流量传送的量子态隐形传送方法适用于量子通信网络和信息传播技术领域。[0034]由于上述技术方案运用,本发明与现有技术相比具有下列优点:[0035]1、本发明采用分流流量,待传送的未知多维多量子比特纠缠态不再是通过一条量子信道传送,而是将t个量子态均衡的通过p条路径分别传送,而且传送的纠缠态可以是任意多比特任意多能级的量子系统,因此,本发明传输链路选择具有动态性和灵活性,能够满足构建复杂量子通信网络的要求,提高了信息传输的效率。[0036]2、本发明的量子态隐形传送方法,由于网络终端用户Alice和另一终端用户Bob之间最终建立GBS态量子信道,整个过程所要求的GBSM测量、经典通信和局域操作都是可以实现的,而且未知态传送成功的效率也非常高。[0037]3、当存在多组发送方与接收方时,采用本发明的方法,可利用已经存在的链路进行态传送而不需要另外构建网络;采用这种共享链路的方法,能够降低网络的复杂程度,节约资源,而且易于维护。附图说明[0038]图1为本发明实施例的基于量子网络中分流流量传送的量子态隐形传送方法流程图;[0039]图2为实施例中网络终端用户Alice和另一终端用户Bob以及各中继节点所组成的P条传送路径分布示意图;[0040]图3为实施例中网络终端用户Alice和另一终端用户Bob之间建立起GBS信道后,终端用户Alice隐形传送未知多维多量子比特纠缠态中的某个qudity的传输示意图;[0041]图4为实施例二中以2比特未知2维2量子比特纠缠态传送网络结构示意图;[0042]图5为两个网络终端用户Alicel和Alice2共享链路进行态传送示意图。具体实施方式[0043]下面结合附图及实施例对本发明作进一步描述:[0044]实施例一:本发明的主要实现思想是:在基于量子中继器的长距离通信系统中,网络终端用户Alice通过多条传输路径向另一终端用户Bob发送未知多维多量子比特纠缠态在各中继节点的帮助下,利用纠缠交换原理建立起终端用户Alice和另一终端用,户Bob之间的长距离量子信道,然后结合量子隐形传态实现安全高效的量子信息传输。其中,传输路径的选择将体现分流流量的思想,将t个qudit分成p组,同时并行的通过p条路径传输,这样能够提高量子信息传输的效率和安全性。[0045]参见图1和图2,一种基于量子网络中分流流量传送的量子态隐形传送方法,该方法具体实施步骤如下:[0046]步骤1、网络终端用户Alice想要发送未知多维多量子比特纠缠态t给另一终端用户Bob,首先终端用户Alice通过经典信道告知中心服务器该未知多维多量子比特纠缠态的qudit总数t,中心服务器选择合适的传送路径数PKpSt,然后计算出第ii=l,2,…,p条路径传送的qudit数Xii=1,2,…,p和该路径上的中继节点数qii=1,2,…,P,以此实现t个qudit同时并行且均衡的通过p条路径传输。在每条传输路径上,终端用户Alice与第一个中继节点间、相邻中继节点间和最后一个中继节点与终端用户Bob之间均共享Xii=1,2,…,p对广义Be11态GBS作为量子信道。[0047]其中所述未知多维多量子比特纠缠态Jt比特d能级量子态,那么它一定可以写成如下形式:[0051]所述中心服务器根据未知多维多量子比特纠缠态的qudit总数t选择PKpSt条传输路径的过程为:中心服务器按照一种均衡分配算法,使得P条路径传输的qudit数量尽量均衡,所选P条路径上分别包含i=l,2,···,?个中继节点,路径选择成功之后,第ii=1,2,…,p条路径将要传输Xii=1,2,…,p个qudit,其中[0052]所述广义Bell态(GBS的形式为由于第ii=l,,+.2,"·,ρ条路径将要传输^丨=1,2,···,?个qudit,所以要求在该路径上,终端用户Alice与第一个中继节点间、相邻中继节点间和最后一个中继节点与终端用户Bob之间均共享X1i=1,2,…,p个纠缠对作为量子信道。[0053]步骤2、各个中继节点通过对自己所拥有的quditBt和At+it=1,2,…,qi;i=1,2,···,p执行广义bell态测量GBSM,并将测量结果通过经典信道告知终端用户Bob,Bob选择相应的幺正操作能够与终端用户Alice建立起GBS态量子信道,即终端用户Alice所拥有的quditAi和另一终端用户Bob所拥有的quditi=1,2,…,p塌缩成一对纠缠高维量子比特,所处的量子态为GBS态。[0054]其中所述广义bell态测量(GBSM所使用的广义bell态测量基具有如下形式:其中m,n=0,l,2,…,d-l,·;表示的是模d加。[0055]所述终端用户Bob根据各中继节点发来的测量结果qi;i=l,2,…,p;mt,nt=0,l,2,…,d-l,选择相应的幺正变换有如下形式:[0057]在终端用户Bob完成qii=l,2,···,p次幺正操作之后,终端用户Alice所拥有的quditAi和另一终端用户Bob所拥有的qudH?c|Ii=l,2,…,p塌缩成一对纠缠高维量子比特,所处的量子态为GBS态有如下形式:[0058]这时所有qudit组成的系统有如下形式:[0060]步骤3、参见图3所示,网络终端用户Alice对qudityy=l,2,…,t与quditAl执行广义bell态GBSM测量,并将测量结果通过经典信道传送给另一终端用户Bob,Bob执行相应的酉操作就能够在quditBqi=l,2,…,p上恢复qudity的初始状态。[0061]其中所述网络终端用户Alice对qudityy=l,2,…,t与quditAl执行GBSM测量,有如下形式:[0064]并将测量结果通过经典信道传送给另一终端用户Bob,Bob对quditBqp执行相应的酉操作Umn就能够在qudil上恢复qudity的初始状态。[0065]步骤4、当p条路径都完成传送任务后,t个qudit状态都转移到了终端用户Bob所拥有的quditBq彳1ί=1,2,···,ρ上。这时,未知多维多量子比特纠缠态成功地隐形传递到了由t个quditSqI构成的量子系统上。[0066]其中,当p条路径都完成传送任务后,组成待传送未知态的t个qudit状态都转移到了终端用户Bob所拥有的qUdit5q.+1i=l,2,…,P上。P条路径是步骤1中,中心服务器根据均衡分配算法所确定的,它们负责将未知多维多量子比特纠缠态在终端用户Bob处重现,每条路径传输的qudit数量为Xii=l,2,···,p,其4[0067]实施例二:[0068]以2能级2量子比特量子纠缠态[0069]的传输举例说明,其中Iao12[0070]步骤1、网络终端用户Alice向中心服务器发起服务请求,中心服务器根据qubit总数t=2,选择传送路径数p=2,假设每条路径包含均包含一个中继节点数qi=Ii=1,2。即终端用户Alice通过路径IP=1传送qubit1的量子态,该路径的中继节点为中继Rl;通过路径2p=2传送qubit2的量子态,该路径的中继节点为中继R2;[0071]如图4所示,在路径1上,终端用户Alice与中继节点Rl共享纠缠对[0072]_继节点Rl与另一终端用户Bob共享纠缠%其中终端用户Alice拥有qubitAn,中继节点Rl拥有QubitB1^PA12,QubitB12属于另一终端用户Bob。此时该路径上的总系统状态为:[0074]同理,在路径2上,终端用户Alice与中继节点R2共享纠缠对[0075]中继节点R2与另一终端用户Bob共享纠缠对其中终端用户Alice拥有QubitA21,中继节点R2拥有qubitB24PA22,qubitB22属于另一终端用户Bob。此时该路径上的总系统状态为:[0077]步骤2、中继Rl对B11和A12执行广义bell态测量GBSM测量),同时中继R2对B21和A22执行广义bell态测量GBSM测量),测量基为:[0078]其中m,n=0,l,表示的是模2力„„即为:[0083]中继Rl用上述测量基测量qubitB11和A12使得qubitA11和B12以相等的概率坍缩到[0087]然后R1通过经典信道将测量结果告知终端用户Bob,Bob根据测量结·选择相应的幺正操作来构建终端用户Alice和另一终端用户Bob之间的GBS信道,根据1知幺正变换为:[0091]测量结果和终端用户Bob执行幺正变换的关系对照表如下所示:[0092][0093]表1[0094]终端用户Bob对qubitBi2执行幺正变换之后,终端用户Alice拥有的qubitAii和Bob拥有的qubitB12构成一个GBS纠缠态,[0096]同理,中继R2通过以上相似操作,测量qubitΒ2θΡΑ22、告知终端用户Bob测量结果、Bob对qubitB22相应的幺正变换Umn能够使终端用户Alice拥有的qubitA2i和另一终端用户Bob拥有的qubit822构成一个GBS纠缠态,[0098]步骤3、经过步骤2的量子信道的构建,整个联合系统的状态塌缩到:[0099]网络终端用户Alice对qubitl和A11执行GBSM测量,同时对qubit2和A21执行GBSM测量,并将测量结果和_通过经典信道告知另一终端用户Bob,Bob根据下表分别对qubitBi2和B22执行相应的幺正操作:[0100][0101]表2[0102]例如当网络终端用户AIice测得qubit1和Aii的系统状态为qubit2和A2I的系统状态爻?终端用户Bob通过经典信道得知这两个结果,之后对qubitB1^PB22分别执行么正操作|:仏2和[0103]步骤4、当两条路径都传输完毕,那么该2能级2量子比特纠缠态[0104]:被成功的隐形传递到了由qubitBi2和B22构成的量子系统上,即[0107]本实施例中,通过在两个网络终端用户之间构建多条发送路径,完成未知多维多量子比特纠缠态的隐形传送,应当指出,当存在多组发送方和接收方时,如图5所示,可利用已经存在的链路进行态传送而不需要另外构建网络,这种共享链路的方法能够进一步的降低网络的复杂程度,节约资源,易于维护。

权利要求:1.一种基于量子网络中分流流量传送的量子态隐形传送方法,网络终端用户Alice发送未知多维多量子比特纠缠态.给另一终端用户Bob,其特征在于,包括以下步骤:1终端用户Alice通过经典信道告知中心服务器该未知多维多量子比特纠缠态的qudit总数t,中心服务器选择合适的传送路径数p,然后计算出第i条路径传送的qudit数Xi,和该路径上的中继节点数qi,使t个qudit同时并行且均衡地通过p条路径传输;在第i条传输路径上,终端用户Alice与第一个中继节点间、相邻中继节点间、最后一个中继节点与终端用户Bob之间均共享Xi对广义Bel1态作为量子信道;其中,KpSt,i=l,2,…,p;2各中继节点通过对自己所拥有的quditBt和At+1i行广义Bell态测量,其中,t=l,2,-",11;丨=1,2,‘",?,并将测量结果通过经典信道告知终端用户8〇13,8〇13选择相应的幺正操作与终端用户Alice建立起GBS态量子信道,即网络终端用户Alice所拥有的quditA1*另一终端用户Bob所拥有的qudit塌缩成一对纠缠高维量子比特,所处的量子态为GBS态;⑶网络终端用户Alice对qudity与quditAi执行广义Bell态测量,y=l,2,…,t,并将测量结果通过经典信道传送给终端用户Bob,Bob执行相应的酉操作在qudit上恢复qudity的初始状态;4当p条路径都完成传送任务后,t个qudit状态都转移到了终端用户Bob所拥有的qudit上,这时,未知的多维多量子比特纠缠态.隐形传递到了由t个qudit构成的量子系统上。2.根据权利要求1所述的基于量子网络中分流流量传送的量子态隐形传送方法,其特征在于:步骤(1中,所述未知多维多量子比特纠缠态为t比特d能级量子态,表达为:其中,3.根据权利要求1所述的基于量子网络中分流流量传送的量子态隐形传送方法,其特征在于:中心服务器根据未知多维多量子比特纠缠态的qudit总数t选择p条传输路径的方法为:中心服务器按照均衡流量分配算法,使得P条路径传输的qudit数量满足均衡要求,所选P条路径上分别包含个中继节点,路径选择成功之后,第i条路径传输X1Aqudit,4.根据权利要求1所述的基于量子网络中分流流量传送的量子态隐形传送方法,其特征在于:所述广义Bell态的形式为5.根据权利要求1所述的基于量子网络中分流流量传送的量子态隐形传送方法,其特征在于:步骤(2中所述广义Bell态测量所使用的广义bell态测量基具有如下形式:其中111,11=0,1,2广_,1-1,1为量子纠缠态的能级9数,表示模d加;终端用户Bob根据各中继节点发来的测量结果mt,nt=〇,1,2,…,d-Ι,选择相应的么正变换有如下形式:在终端用户Bob完成取次么正操作之后,网络终端用户Alice所拥有的quditA1和另一终端用户Bob所拥有的qudit|塌缩成一对纠缠高维量子比特,所处的量子态为GBS态有如下形式:这时所有qudit组成的系统有如下形式:6.根据权利要求1所述的基于量子网络中分流流量传送的量子态隐形传送方法,其特征在于:步骤3中,终端用户Alice对qudity与quditAi执行广义Bell态测量,有如下形式:Alice将测量结果过经典信道传送给另一终端用户Bob,Bob对qudit执行相应的酉操作Umn以在qudit上恢复qudity的初始状态。

百度查询: 苏州大学 一种基于量子网络中分流流量传送的量子态隐形传送方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。