买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】一种具有同位素参比腔的激光气体检测装置及方法_武汉市安科睿特科技有限公司_201711029889.6 

申请/专利权人:武汉市安科睿特科技有限公司

申请日:2017-10-30

公开(公告)日:2024-03-19

公开(公告)号:CN107607488B

主分类号:G01N21/39

分类号:G01N21/39;G01N21/01

优先权:

专利状态码:有效-授权

法律状态:2024.03.19#授权;2018.02.13#实质审查的生效;2018.01.19#公开

摘要:本发明公开了一种具有同位素参比腔的激光气体检测装置及方法。包括激光发射单元101、探测单元103以及连接气室单元102,激光发射单元101包含激光器5、激光器温控装置6、激光器驱动电路板1、激光器温度控制板3、透镜A11,探测单元103包括光电探测器18、信号处理电路板21、透镜B31,激光发射单元101还包括灌封了被测气体的同位素参比腔A26,探测单元102还包括灌封了被测气体的同位素参比腔B27;激光器5位于同位素参比腔A26内,光电探测器18位于同位素参比腔B27内。本发明结构简单,可靠性高,即使在低浓度测量中,没有待测气体的吸收峰,同位素气体的吸收峰依然存在;或当激光器输出波长漂移出一定范围,同位素参比腔稳定的吸收峰为找寻被测气体吸收峰提供了准确的参考。

主权项:1.一种具有同位素参比腔的激光气体检测装置,包括激光发射单元(101)、探测单元(103)以及连接气室单元(102),激光发射单元(101)、探测单元(103)分别位于连接气室单元(102)两端,所述激光发射单元(101)包含激光器(5)、激光器温控装置(6)、激光器驱动电路板(1)、激光器温度控制板(3)、透镜A(11),所述探测单元(103)包括光电探测器(18)、信号处理电路板(21)、透镜B(31),其特征在于所述激光发射单元(101)还包括灌封了被测气体的同位素参比腔A(26),所述探测单元(103)还包括灌封了被测气体的同位素参比腔B(27);所述激光器(5)位于同位素参比腔A(26)内,所述光电探测器(18)位于同位素参比腔B(27)内。

全文数据:一种具有同位素参比腔的激光气体检测装置及方法技术领域[0001]本发明涉及一种激光气体检测装置及方法,具体地说是一种具有同位素参比腔的激光气体检测装置及方法。背景技术[0002]激光气体分析检测一般采用可调谐半导体激光吸收光谱TDLAS技术进行气体浓度检测。当一束具有连续波长的红外光通过某物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量发生能级跃迀,该处波长的光会被物质吸收,从而形成该物质分子的特征红外吸收光谱。[0003]激光输出波长与工作电流和工作温度有关。一些现场环境温度变化较大、硬件使用时间过长等会使激光器输出波长发生变化,导致被测气体吸收峰发生漂移。当激光器输出波长漂移出一定范围,仪器无法进行测量。另外,在实际低浓度的测量中,有时无法判断是实际浓度过低还是激光器波长漂移出扫描范围,导致误测。发明内容[0004]本发明针对现有技术存在的问题提供了一种具有同位素参比腔的激光气体检测装置及方法。[0005]本发明的技术解决方案是:一种具有同位素参比腔的激光气体检测装置,包括激光发射单元、探测单元以及连接气室单元,激光发射单元、探测单元分别位于连接气室单元两端,所述激光发射单元包含激光器、激光器温控装置、激光器驱动电路板、激光器温度控制板、透镜A,所述探测单元包括光电探测器、信号处理电路板、透镜B,所述激光发射单元还包括灌封了被测气体的同位素参比腔A,所述探测单元还包括灌封了被测气体的同位素参比腔B;所述激光器位于同位素参比腔A内,所述光电探测器位于同位素参比腔B内。[0006]根据本发明实施例,所述同位素参比腔A、同位素参比腔B上部分别设置有灌封用通孔,灌封完成后用橡胶软塞和堵头加专用胶水进行封存。[0007]根据本发明实施例,所述激光器温度控制板通过专用胶水密封粘接在激光器安装座上,所述激光器驱动电路板通过连接螺钉固定在所述激光器安装座上;所述光电探测器通过螺钉压紧密封圈密封固定在探测器安装座上,所述光电探测器引线由探测器安装座上的通孔穿出与信号处理电路板相连,信号处理电路板通过连接螺钉固定在探测器安装座上。[0008]根据本发明实施例,所述连接气室单元包括连接气室、出气口、进气口,连接气室安装在气室固定板上,气室固定板安装在底座上,连接气室两端设有气室密封圈A、气室密封圈B。[0009]根据本发明实施例,所述透镜A通过压紧环A螺纹压紧密封圈A方式固定在发射端安装座上;所述透镜B通过压紧环B螺纹压紧密封圈B方式固定在接收端安装座上;其作用为:1.固定透镜;2.密封同位素参比腔。[0010]根据本发明实施例,所述连接气室上还设有温控装置,所述温控装置包括加热棒、温度传感器,加热棒通过加热棒压紧片固定在连接气室上,温度传感器通过导热硅胶粘接埋入连接气室。[0011]根据本发明实施例,所述同位素参比腔A、同位素参比腔B灌封的为被测气体同位素或与被测气体吸收谱线相邻近的气体;同时,同位素气体具有非吸附性、非腐蚀性,且稳定性好,密封性好,不会对激光发射单元以及探测单元产生影响。[0012]所述的激光器采用VCSEL或者DFB激光器。[0013]所述的激光发射单元的激光器和探测器位于同位素参比腔内,能有效避免环境背景气体干扰,无需吹扫。[0014]—种具有同位素参比腔的激光气体检测方法,当一些场合环境温度变化较大或硬件老化导致激光器输出波长发生漂移,需要进行二次谐波纠偏时,软件会自动寻峰纠偏。[0015]软件自动寻峰纠偏是通过以下步骤实现的:软件在不断输出的三角波内选取一定范围,通过寻找最大值点和最大值点两边找最小值的方法,找到所述范围内的波形,并将所有波形正常的峰根据峰峰值由大到小存入,将峰峰值大于某特定范围的峰判断为有效波形。若有效波形为零,则返回初始状态选取另一范围重新扫描;若只找到同位素吸收峰或同位素与被测气体吸收峰同时找到,则根据同位素稳定的吸收峰和两个吸收峰之间邻近的特定间距范围,可判断激光器输出波长是否发生偏移。若激光器输出波长发生偏移,软件通过纠偏温度补偿,调整激光器波长,将同位素的二次谐波固定在一定的允许范围内,此时待测气体的吸收峰也会纠正到正确范围内。[0016]进一步地,利用同位素参比腔的已知浓度和信号幅值的对应关系,该装置可以进行自标定,无需通入被测气体标气进行标定。[0017]本发明装置结构简单,可靠性高,利用同位素气体分子结构与吸收谱线的相似性,即使在低浓度测量中,没有待测气体的吸收峰,同位素气体的吸收峰依然存在,当激光器输出波长漂移出一定范围,同位素参比腔稳定的吸收峰为找寻被测气体吸收峰提供了准确的参考,为软件纠偏提供了重要依据。附图说明[0018]图1为本发明的结构示意图左视图。[0019]图2为本发明的结构示意图剖视图。[0020]图3为不加同位素参比腔正常情况下测量波形示意图。[0021]图4为增加同位素参比腔纠偏后测量波形示意图。[0022]图5为具有同位素参比腔的激光气体检测方法流程图。[0023]图中:1-激光器驱动电路板;2-连接螺钉;3_激光器温度控制板;4-激光器安装座;5-激光器;6-激光器温控装置;7—灌封用通孔;8_橡胶软塞;9-堵头;1〇_发射端座;i卜透镜A;12-密封圈A;13-压紧环A;14-气室密封圈A;15-出气口;16-连接气室;17-进气口;18-光电探测器;19_探测器安装座;2〇-连接螺钉;21-信号处理电路板;22-加热棒;23-加热棒压紧片;24-气室固定板;25-底座;26-同位素参比腔A;27-同位素参比腔B;28-气室密封圈B;29_压紧环B;30-密封圈B;31-透镜B;32-温度传感器;33_密封圈;101-激光发射单元;102-连接气室单元;1〇3-探测单元;2〇1-未加同位素参比腔正常情况下被测气体二次谐波;2〇2_增加同位素参比腔纠偏后同位素气体二次谐波;203-增加同位素参比腔纠偏后被测气体二次谐波。具体实施方式[0024]下面对照附图结合实施例对本发明作进一步的说明。[0025]参照图1、图2所示,一种具有同位素参比腔的激光气体检测装置,包括激光发射单元101、探测单元103以及连接气室单元102,激光发射单元101、探测单元103分别位于连接气室单元102两端,所述激光发射单元101包含激光器5、激光器温控装置6、激光器驱动电路板1、激光器温度控制板3、透镜All,所述探测单元103包括光电探测器18、信号处理电路板21、透镜B31,所述激光发射单元101还包括灌封了被测气体的同位素参比腔A26,所述探测单元102还包括灌封了被测气体的同位素参比腔B27;所述激光器5位于同位素参比腔A26内,所述光电探测器18位于同位素参比腔B27内;光电探测器18与同位素参比腔B27之间设有密封圈33。[0026]所述连接气室单元102包括连接气室16、出气口15、进气口17,连接气室16安装在气室固定板24上,气室固定板24安装在底座25上,连接气室16两端设有气室密封圈A14、气室密封圈B28。[0027]所述同位素参比腔A26、同位素参比腔B27上部分别设置有灌封用通孔7,灌封完成后用橡胶软塞8和堵头9加专用胶水进行封存。[0028]所述激光器温度控制板3通过专用胶水密封粘接在激光器安装座4上,所述激光器驱动电路板1通过连接螺钉2固定在所述激光器安装座4上;所述光电探测器18通过螺钉压紧密封圈密封固定在探测器安装座19上,所述光电探测器18引线由探测器安装座19上的通孔穿出与信号处理电路板21相连,信号处理电路板21通过连接螺钉20固定在探测器安装座19上。[0029]所述透镜All通过压紧环A13螺纹压紧密封圈A12方式固定在发射端安装座10上;所述透镜B31通过压紧环B29螺纹压紧密封圈B30方式固定在接收端安装座上。[0030]所述连接气室16上还设有温控装置,所述温控装置包括加热棒22、温度传感器32,加热棒22通过加热棒压紧片23固定在连接气室16上,温度传感器32通过导热硅胶粘接埋入连接气室16。[0031]激光器5采用VCSEL或者DFB激光器。[0032]当检测装置开始工作时,测量光束穿过同位素参比腔A26、经过透镜All会聚,穿过被测气体,经过透镜B31会聚、同位素参比腔B27被光电探测器18接收。[0033]由于同位素气体分子结构相似的特性,其吸收谱线与被测气体吸收谱线相邻近,此时会出现相邻的两个二次谐波吸收峰。当一些场合环境温度变化较大或硬件老化导致激光器输出波长发生漂移,两个二次谐波吸收峰也会发生漂移,此时需要进行二次谐波纠偏,软件会自动寻峰纠偏。[0034]如图3所示,201-未加同位素参比腔正常情况下被测气体二次谐波。[0035]如图4所示,202-增加同位素参比腔纠偏后同位素气体二次谐波;203-增加同位素参比腔纠偏后被测气体二次谐波。[0036]如图5所示,软件自动寻峰纠偏是通过以下步骤实现的:软件在不断输出的三角波内选取一定范围,通过寻找最大值点和最大值点两边找最小值的方法,找到所述范围内的波形,并将所有波形正常的峰根据峰峰值由大到小存入,将峰峰值大于某特定范围的峰判断为有效波形。若有效波形为零,则返回初始状态选取另一范围重新扫描;若只找到同位素吸收峰或同位素与被测气体吸收峰同时找到,则根据同位素稳定的吸收峰和两个吸收峰之间邻近的特定间距范围,可判断激光器输出波长是否发生偏移。若激光器输出波长发生偏移,软件通过纠偏温度补偿,调整激光器波长,将同位素的二次谐波固定在一定的允许范围内,此时待测气体的吸收峰也会纠正到正确范围内。[0037]以上列举的仅为本发明的具体实施例,显然,本发明不限于以上实施例。

权利要求:1.一种具有同位素参比腔的激光气体检测装置,包括激光发射单元(101、探测单元103以及连接气室单元(102,激光发射单元(101、探测单元(103分别位于连接气室单元(102两端,所述激光发射单元101包含激光器5、激光器温控装置6、激光器驱动电路板(1、激光器温度控制板3、透镜A11,所述探测单元(103包括光电探测器(18、信号处理电路板21、透镜B31,其特征在于所述激光发射单元(101还包括灌封了被测气体的同位素参比腔A26,所述探测单元(102还包括灌封了被测气体的同位素参比腔B27;所述激光器5位于同位素参比腔A26内,所述光电探测器(18位于同位素参比腔B27内。2.根据权利要求1所述的一种具有同位素参比腔的激光气体检测装置,其特征在于所述同位素参比腔A26、同位素参比腔B27上部分别设置有灌封用通孔7,灌封完成后用橡胶软塞8和堵头9加专用胶水进行封存。3.根据权利要求1所述的一种具有同位素参比腔的激光气体检测装置,其特征在于所述激光器温度控制板3通过专用胶水密封粘接在激光器安装座4上,所述激光器驱动电路板(1通过连接螺钉2固定在所述激光器安装座4上;所述光电探测器(18通过螺钉压紧密封圈密封固定在探测器安装座(19上,所述光电探测器(18引线由探测器安装座19上的通孔穿出与信号处理电路板21相连,信号处理电路板21通过连接螺钉20固定在探测器安装座(19上。4.根据权利要求1所述的一种具有同位素参比腔的激光气体检测装置,其特征在于所述连接气室单元(102包括连接气室(16、出气口(15、进气口(17,连接气室(16安装在气室固定板24上,气室固定板24安装在底座上,连接气室(16两端设有气室密封圈A14、气室密封圈B28。5.根据权利要求1所述的一种具有同位素参比腔的激光气体检测装置,其特征在于所述透镜A11通过压紧环A1¾螺纹压紧密封圈A12方式固定在发射端安装座(10上;所述透镜B31通过压紧环B29螺纹压紧密封圈B30方式固定在接收端安装座上。6.根据权利要求4所述的一种具有同位素参比腔的激光气体检测装置,其特征在于所述连接气室(16上还设有温控装置,所述温控装置包括加热棒22、温度传感器32,加热棒22通过加热棒压紧片23固定在连接气室(16上,温度传感器32通过导热硅胶粘接埋入连接气室(16。7.根据权利要求1所述的一种具有同位素参比腔的激光气体检测装置,其特征在于所述同位素参比腔A26、同位素参比腔B27灌封的为被测气体同位素或与被测气体吸收谱线相邻近的气体。8.采用权利要求1-7任一项所述装置的一种具有同位素参比腔的激光气体检测方法,其特征在于激光器采用三角波或锯齿波扫描到同位素气体的谱线后,软件会自动寻峰纠偏,具体步骤如下:软件在不断输出的三角波内选取一定范围,通过寻找最大值点和最大值点两边找最小值的方法,找到所述范围内的波形,并将所有波形正常的峰根据峰峰值由大到小存入,将峰峰值大于某特定范围的峰判断为有效波形;若有效波形为零,则返回初始状态选取另一范围重新扫描;若只找到同位素吸收峰或同位素与被测气体吸收峰同时找到,则根据同位素稳定的吸收峰和两个吸收峰之间邻近的特定间距范围,可判断激光器输出波长是否发生偏移;若激光器输出波长发生偏移,软件通过纠偏温度补偿,调整激光器波长,将同位素的二次谐波固定在一定的允许范围内,此时待测气体的吸收峰也会纠正到正确范围内。

百度查询: 武汉市安科睿特科技有限公司 一种具有同位素参比腔的激光气体检测装置及方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。