买专利,只认龙图腾
首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】一种Urea-SCR控制参数离线标定系统及标定方法_东风商用车有限公司_201811557840.2 

申请/专利权人:东风商用车有限公司

申请日:2018-12-19

公开(公告)日:2024-03-22

公开(公告)号:CN109411027B

主分类号:G16C20/10

分类号:G16C20/10

优先权:

专利状态码:有效-授权

法律状态:2024.03.22#授权;2019.03.26#实质审查的生效;2019.03.01#公开

摘要:一种Urea‑SCR控制参数离线标定系统,包括仿真模型、仿真值和目标值对比单元、仿真参数调整单元,运行时,仿真模型先根据工况信息存储器存储的工况信息计算得到尿素喷射量仿真值或喷后NOxNH3排放量仿真值并将其传送给仿真值和目标值对比单元,随后仿真值和目标值对比单元将接收的仿真值与目标值进行对比,若∣仿真值‑目标值∣>e,则由仿真参数调整单元对仿真参数进行调整后输入仿真模型中进行下一轮的仿真计算,若∣仿真值‑目标值∣<e,则标定结束,其中,e为允许的最大偏差值。该设计不仅缩短了标定周期、节省了标定成本,而且显著降低了标定的工作强度。

主权项:1.一种Urea-SCR控制参数离线标定系统,其特征在于:所述系统包括仿真模型(1)、仿真值和目标值对比单元(2)、仿真参数调整单元(3),所述仿真模型(1)包括一号输入端口(11)、二号输入端口(12)、尿素喷射量仿真模型(13)、喷后NOx或NH3排放量仿真模型(14),所述一号输入端口(11)与工况信息存储器(4)的输出端口相连接,所述尿素喷射量仿真模型(13)的输入端口与一号输入端口(11)、二号输入端口(12)相连接,尿素喷射量仿真模型(13)的输出端口通过喷后NOxNH3排放量仿真模型(14)与目标值对比单元(2)的第一输入端口(21)相连接,仿真值和目标值对比单元(2)的第二输入端口(22)与目标值信息存储器(5)的输出端口相连接,仿真值和目标值对比单元(2)的第一输出端口(23)通过仿真参数调整单元(3)与二号输入端口(12)相连接,仿真值和目标值对比单元(2)的第二输出端口(24)与标定结束控制器(6)的输入端口相连接;所述工况信息包括转速、扭矩、催化剂温度;所述尿素喷射量仿真模型(13)为:M=A*B*C*309425上式中,M为尿素喷射量,A为原机NOx排放量,由该模型中的转速-扭矩-原机NOx排放量map读取得到,B为废气流量,由该模型中的转速-扭矩-废气流量map读取得到,C为氨氮比,由该模型中的转速-扭矩-氨氮比map读取得到;所述喷后NOxNH3排放量仿真模型(14)为:N=A-A*EP=N*1-E*5.52530-(Fi-Fi-1)上式中,N为喷后NOx排放量,A为原机NOx排放量,E为NOx实际转化效率,由该模型中的催化剂温度-尿素喷射量-NOx实际转化效率map读取得到,P为喷后NH3排放量,Fi为该时刻NH3的实际吸附量,Fi-1为上一时刻NH3的实际吸附量,实际吸附量F由该模型中的喷射量-转化效率-NH3实际吸附量map读取得到,其在初始时刻的值为0。

全文数据:一种Urea-SCR控制参数离线标定系统及标定方法技术领域本发明属于车辆后处理系统领域,具体涉及一种Urea-SCR控制参数离线标定系统及标定方法,适用于缩短标定周期、节省标定成本、降低标定的工作强度。背景技术目前Urea-SCR技术被认为是降低车用柴油机NOX排放最有效的方法,通过尿素喷射系统将质量分数32.5%的尿素水溶液喷入排气管中后,需要经过碰壁、蒸发、水解、热解等过程转化为NH3,然后与NOx反应,降低车用柴油机的尾气NOx排放。随着排放法规的日益严格,NOx排放限值越来越低,因此后处理系统需要更精准的尿素喷射控制策略来实现高的NOx转化效率和低的NH3泄露。控制策略的精度要求越高,需要标定的控制参数和控制map也越多,而目前其标定大多采用试验的方法完成。该方法需要重复进行ESCETC循环试验验证标定结果,ESCETC试验循环为半小时,每次调整控制参数后都需要进行ESCETC循环验证,涉及的试验数据繁多,不仅标定周期长、标定成本高,而且对标定工程师的专业要求高,同时参数调整后的验证过程复杂,工作负荷大。发明内容本发明的目的是克服现有技术存在的周期长、成本高、工作强度大的问题,提供一种周期短、成本低且工作强度小的Urea-SCR控制参数离线标定系统及标定方法。为实现以上目的,本发明的技术方案如下:一种Urea-SCR控制参数离线标定系统,包括仿真模型、仿真值和目标值对比单元、仿真参数调整单元,所述仿真模型的一号输入端口与工况信息存储器的输出端口相连接,仿真模型的输出端口与仿真值和目标值对比单元的第一输入端口相连接,仿真值和目标值对比单元的第二输入端口与目标值信息存储器的输出端口相连接,仿真值和目标值对比单元的第一输出端口通过仿真参数调整单元与仿真模型的二号输入端口相连接,仿真值和目标值对比单元的第二输出端口与标定结束控制器的输入端口相连接,其中,所述仿真模型包括尿素喷射量仿真模型、喷后NOxNH3排放量仿真模型中的至少一种。所述仿真模型包括尿素喷射量仿真模型、喷后NOx或NH3排放量仿真模型,所述尿素喷射量仿真模型的输入端口与一号输入端口、二号输入端口相连接,尿素喷射量仿真模型的输出端口通过喷后NOxNH3排放量仿真模型与第一输入端口相连接。所述工况信息包括转速、扭矩、催化剂温度;所述尿素喷射量仿真模型为:M=A*B*C*309425上式中,M为尿素喷射量,A为原机NOx排放量,由该模型中的转速-扭矩-原机NOx排放量map读取得到,B为废气流量,由该模型中的转速-扭矩-废气流量map读取得到,C为氨氮比,由该模型中的转速-扭矩-氨氮比map读取得到;所述喷后NOxNH3排放量仿真模型为:N=A-A*EP=N*1-E*5.52530-Fi-Fi-1上式中,N为喷后NOx排放量,A为原机NOx排放量,E为NOx实际转化效率,由该模型中的催化剂温度-尿素喷射量-NOx实际转化效率map读取得到,P为喷后NH3排放量,Fi为该时刻NH3的实际吸附量,Fi-1为上一时刻NH3的实际吸附量,实际吸附量F由该模型中的喷射量-转化效率-NH3实际吸附量map读取得到,其在初始时刻的值为0。一种Urea-SCR控制参数离线标定系统的标定方法,具体为:首先,所述仿真模型根据工况信息存储器存储的工况信息计算得到尿素喷射量仿真值或喷后NOxNH3排放量仿真值并将其传送给仿真值和目标值对比单元,随后仿真值和目标值对比单元将接收的仿真值与目标值进行对比,若∣仿真值-目标值∣>e,则通过第一输出端口将该信息传递至仿真参数调整单元,仿真参数调整单元再调整仿真参数并输入仿真模型中进行下一轮的仿真计算,若∣仿真值-目标值∣<e,则通过第二输出端口将该信息传递至标定结束控制器,然后标定结束控制器控制结束标定流程,其中,e为允许的最大偏差值。所述仿真模型包括尿素喷射量仿真模型、喷后NOxNH3排放量仿真模型,所述尿素喷射量仿真模型的输入端口与一号输入端口、二号输入端口相连接,尿素喷射量仿真模型的输出端口通过喷后NOxNH3排放量仿真模型与第一输入端口相连接;所述离线标定方法中,仿真模型根据工况信息存储器存储的工况信息计算得到尿素喷射量仿真值或喷后NOxNH3排放量仿真值并将其传送给仿真值和目标值对比单元是指:尿素喷射量仿真模型先根据工况信息存储器存储的工况信息计算得到尿素喷射量仿真值并将其传送给喷后NOxNH3排放量仿真模型,喷后NOxNH3排放量仿真模型再根据尿素喷射量仿真值计算得到喷后NOxNH3排放量仿真值并将其传送给仿真值和目标值对比单元。与现有技术相比,本发明的有益效果为:本发明一种Urea-SCR控制参数离线标定系统包括仿真模型、仿真值和目标值对比单元、仿真参数调整单元,仿真模型包括尿素喷射量仿真模型、喷后NOxNH3排放量仿真模型中的至少一种,其一号输入端口与工况信息存储器的输出端口相连接,输出端口与仿真值和目标值对比单元的第一输入端口相连接,仿真值和目标值对比单元的第二输入端口与目标值信息存储器的输出端口相连接,仿真值和目标值对比单元的第一输出端口通过仿真参数调整单元与仿真模型的二号输入端口相连接,仿真值和目标值对比单元的第二输出端口与标定结束控制器的输入端口相连接,系统运行时,仿真模型先计算得到尿素喷射量仿真值或喷后NOxNH3排放量仿真值并将其传送给仿真值和目标值对比单元,随后仿真值和目标值对比单元将接收的仿真值与目标值进行对比,若两者的差值大于允许的最大偏差值,则仿真参数调整单元调整仿真参数并输入仿真模型中进行下一轮的仿真计算,直至差值小于允许的最大偏差值,此时标定结束,该离线标定系统仅需进行仿真分析即可完成参数的标定,不仅减少了大量的试验内容,缩短了标定周期、节省了标定成本,而且无需标定工程师在试验台架和整车上观察试验现象,极大的降低了工作强度。因此,本发明不仅缩短了标定周期、节省了标定成本,而且显著降低了标定的工作强度。附图说明图1为本发明实施例1的结构框图。图中,仿真模型1、一号输入端口11、二号输入端口12、尿素喷射量仿真模型13、喷后NOxNH3排放量仿真模型14、仿真值和目标值对比单元2、第一输入端口21、第二输入端口22、第一输出端口23、第二输出端口24、仿真参数调整单元3、工况信息存储器4、目标值信息存储器5、标定结束控制器6。具体实施方式下面结合附图说明和具体实施方式对本发明作进一步详细的说明。参见图1,一种Urea-SCR控制参数离线标定系统,包括仿真模型1、仿真值和目标值对比单元2、仿真参数调整单元3,所述仿真模型1的一号输入端口11与工况信息存储器4的输出端口相连接,仿真模型1的输出端口与仿真值和目标值对比单元2的第一输入端口21相连接,仿真值和目标值对比单元2的第二输入端口22与目标值信息存储器5的输出端口相连接,仿真值和目标值对比单元2的第一输出端口23通过仿真参数调整单元3与仿真模型1的二号输入端口12相连接,仿真值和目标值对比单元2的第二输出端口24与标定结束控制器6的输入端口相连接,其中,所述仿真模型1包括尿素喷射量仿真模型13、喷后NOxNH3排放量仿真模型14中的至少一种。所述仿真模型1包括尿素喷射量仿真模型13、喷后NOx或NH3排放量仿真模型14,所述尿素喷射量仿真模型13的输入端口与一号输入端口11、二号输入端口12相连接,尿素喷射量仿真模型13的输出端口通过喷后NOxNH3排放量仿真模型14与第一输入端口21相连接。所述工况信息包括转速、扭矩、催化剂温度;所述尿素喷射量仿真模型13为:M=A*B*C*309425上式中,M为尿素喷射量,A为原机NOx排放量,由该模型中的转速-扭矩-原机NOx排放量map读取得到,B为废气流量,由该模型中的转速-扭矩-废气流量map读取得到,C为氨氮比,由该模型中的转速-扭矩-氨氮比map读取得到;所述喷后NOxNH3排放量仿真模型14为:N=A-A*EP=N*1-E*5.52530-Fi-Fi-1上式中,N为喷后NOx排放量,A为原机NOx排放量,E为NOx实际转化效率,由该模型中的催化剂温度-尿素喷射量-NOx实际转化效率map读取得到,P为喷后NH3排放量,Fi为该时刻NH3的实际吸附量,Fi-1为上一时刻NH3的实际吸附量,实际吸附量F由该模型中的喷射量-转化效率-NH3实际吸附量map读取得到,其在初始时刻的值为0。一种Urea-SCR控制参数离线标定系统的标定方法,具体为:首先,所述仿真模型1根据工况信息存储器4存储的工况信息计算得到尿素喷射量仿真值或喷后NOxNH3排放量仿真值并将其传送给所述仿真值和目标值对比单元2,随后仿真值和目标值对比单元2将接收的仿真值与目标值进行对比,若∣仿真值-目标值∣>e,则通过第一输出端口23将该信息传递至仿真参数调整单元3,仿真参数调整单元3再调整仿真参数并输入仿真模型1中进行下一轮的仿真计算,若∣仿真值-目标值∣<e,则通过第二输出端口24将该信息传递至标定结束控制器6,然后标定结束控制器6控制结束标定流程,其中,e为允许的最大偏差值。所述仿真模型1包括尿素喷射量仿真模型13、喷后NOxNH3排放量仿真模型14,所述尿素喷射量仿真模型13的输入端口与一号输入端口11、二号输入端口12相连接,尿素喷射量仿真模型13的输出端口通过喷后NOxNH3排放量仿真模型14与第一输入端口21相连接;所述离线标定方法中,仿真模型1根据工况信息存储器4存储的工况信息计算得到尿素喷射量仿真值或喷后NOxNH3排放量仿真值并将其传送给仿真值和目标值对比单元2是指:尿素喷射量仿真模型13先根据工况信息存储器4存储的工况信息计算得到尿素喷射量仿真值并将其传送给喷后NOxNH3排放量仿真模型14,喷后NOxNH3排放量仿真模型14再根据尿素喷射量仿真值计算得到喷后NOxNH3排放量仿真值并将其传送给仿真值和目标值对比单元2。实施例1:参见图1,一种Urea-SCR控制参数离线标定系统,包括仿真模型1、仿真值和目标值对比单元2、仿真参数调整单元3,所述仿真模型1包括一号输入端口11、二号输入端口12、尿素喷射量仿真模型13、喷后NOx或NH3排放量仿真模型14,所述尿素喷射量仿真模型13的输入端口通过一号输入端口11与工况信息存储器4的输出端口相连接,尿素喷射量仿真模型13的输出端口通过喷后NOxNH3排放量仿真模型14与仿真值和目标值对比单元2的第一输入端口21相连接,仿真值和目标值对比单元2的第二输入端口22与目标值信息存储器5的输出端口相连接,仿真值和目标值对比单元2的第一输出端口23通过仿真参数调整单元3与二号输入端口12相连接,仿真值和目标值对比单元2的第二输出端口24与标定结束控制器6的输入端口相连接,其中,所述工况信息包括转速、扭矩、催化剂温度,所述尿素喷射量仿真模型13为:M=A*B*C*309425上式中,M为尿素喷射量,A为原机NOx排放量,由该模型中的转速-扭矩-原机NOx排放量map读取得到,B为废气流量,由该模型中的转速-扭矩-废气流量map读取得到,C为氨氮比,由该模型中的转速-扭矩-氨氮比map读取得到;所述喷后NOxNH3排放量仿真模型14为:N=A-A*EP=N*1-E*5.52530-Fi-Fi-1上式中,N为喷后NOx排放量,A为原机NOx排放量,E为NOx实际转化效率,由该模型中的催化剂温度-尿素喷射量-NOx实际转化效率map读取得到,P为喷后NH3排放量,Fi为该时刻NH3的实际吸附量,Fi-1为上一时刻NH3的实际吸附量,实际吸附量F由该模型中的喷射量-转化效率-NH3实际吸附量map读取得到,其在初始时刻的值为0。上述Urea-SCR控制参数离线标定系统的标定方法,具体为:首先,所述尿素喷射量仿真模型13根据工况信息存储器4存储的工况信息计算得到尿素喷射量仿真值并将其传送给喷后NOxNH3排放量仿真模型14,喷后NOxNH3排放量仿真模型14再根据尿素喷射量仿真值计算得到喷后NOxNH3排放量仿真值并将其传送给仿真值和目标值对比单元2,随后仿真值和目标值对比单元2将接收的仿真值与目标值进行对比,若∣仿真值-目标值∣>e,则通过第一输出端口23将该信息传递至仿真参数调整单元3,仿真参数调整单元3再调整仿真参数并输入仿真模型1中进行下一轮的仿真计算,若∣仿真值-目标值∣<e,则通过第二输出端口24将该信息传递至标定结束控制器6,然后标定结束控制器6控制结束标定流程,其中,e为允许的最大偏差值。

权利要求:1.一种Urea-SCR控制参数离线标定系统,其特征在于:所述系统包括仿真模型1、仿真值和目标值对比单元2、仿真参数调整单元3,所述仿真模型1的一号输入端口11与工况信息存储器4的输出端口相连接,仿真模型1的输出端口与仿真值和目标值对比单元2的第一输入端口21相连接,仿真值和目标值对比单元2的第二输入端口22与目标值信息存储器5的输出端口相连接,仿真值和目标值对比单元2的第一输出端口23通过仿真参数调整单元3与仿真模型1的二号输入端口12相连接,仿真值和目标值对比单元2的第二输出端口24与标定结束控制器6的输入端口相连接,其中,所述仿真模型1包括尿素喷射量仿真模型13、喷后NOxNH3排放量仿真模型14中的至少一种。2.根据权利要求1所述的一种Urea-SCR控制参数离线标定系统,其特征在于:所述仿真模型1包括尿素喷射量仿真模型13、喷后NOx或NH3排放量仿真模型14,所述尿素喷射量仿真模型13的输入端口与一号输入端口11、二号输入端口12相连接,尿素喷射量仿真模型13的输出端口通过喷后NOxNH3排放量仿真模型14与第一输入端口21相连接。3.根据权利要求1或2所述的一种Urea-SCR控制参数离线标定系统,其特征在于:所述工况信息包括转速、扭矩、催化剂温度;所述尿素喷射量仿真模型13为:M=A*B*C*309425上式中,M为尿素喷射量,A为原机NOx排放量,由该模型中的转速-扭矩-原机NOx排放量map读取得到,B为废气流量,由该模型中的转速-扭矩-废气流量map读取得到,C为氨氮比,由该模型中的转速-扭矩-氨氮比map读取得到;所述喷后NOxNH3排放量仿真模型14为:N=A-A*EP=N*1-E*5.52530-Fi-Fi-1上式中,N为喷后NOx排放量,A为原机NOx排放量,E为NOx实际转化效率,由该模型中的催化剂温度-尿素喷射量-NOx实际转化效率map读取得到,P为喷后NH3排放量,Fi为该时刻NH3的实际吸附量,Fi-1为上一时刻NH3的实际吸附量,实际吸附量F由该模型中的喷射量-转化效率-NH3实际吸附量map读取得到,其在初始时刻的值为0。4.一种权利要求1所述的Urea-SCR控制参数离线标定系统的标定方法,其特征在于:所述离线标定方法为:首先,所述仿真模型1根据工况信息存储器4存储的工况信息计算得到尿素喷射量仿真值或喷后NOxNH3排放量仿真值并将其传送给仿真值和目标值对比单元2,随后仿真值和目标值对比单元2将接收的仿真值与目标值进行对比,若∣仿真值-目标值∣>e,则通过第一输出端口23将该信息传递至仿真参数调整单元3,仿真参数调整单元3再调整仿真参数并输入仿真模型1中进行下一轮的仿真计算,若∣仿真值-目标值∣<e,则通过第二输出端口24将该信息传递至标定结束控制器6,然后标定结束控制器6控制结束标定流程,其中,e为允许的最大偏差值。5.根据权利要求4所述的一种Urea-SCR控制参数离线标定系统的标定方法,其特征在于:所述仿真模型1包括尿素喷射量仿真模型13、喷后NOxNH3排放量仿真模型14,所述尿素喷射量仿真模型13的输入端口与一号输入端口11、二号输入端口12相连接,尿素喷射量仿真模型13的输出端口通过喷后NOxNH3排放量仿真模型14与第一输入端口21相连接;所述离线标定方法中,仿真模型1根据工况信息存储器4存储的工况信息计算得到尿素喷射量仿真值或喷后NOxNH3排放量仿真值并将其传送给仿真值和目标值对比单元2是指:尿素喷射量仿真模型13先根据工况信息存储器4存储的工况信息计算得到尿素喷射量仿真值并将其传送给喷后NOxNH3排放量仿真模型14,喷后NOxNH3排放量仿真模型14再根据尿素喷射量仿真值计算得到喷后NOxNH3排放量仿真值并将其传送给仿真值和目标值对比单元2。

百度查询: 东风商用车有限公司 一种Urea-SCR控制参数离线标定系统及标定方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。